Course Objectives

O Logical thinking and identify basic data types such as numbers, sets, and functions

used in computer algorithms and systems.
O Know generating functions and solve recurrence relations,
O Solve counting problems specially permutations and combinations,

O Understand graph theory and their applications,



Plan

Logical Thinking

Set Theory

Functions

Recurrence Relations and Generating Functions

Counting Techniques

Graph Theory




Course Description

Chapter(1)

Logical Thinking
1.1 Formal logic.

1.2 Connectives and proposition.
1.3 Truth tables.

1.4 Logical equivalence.

1.5 Propositional logic.

1.6 Predicate logic.

1.7 Formal and informal proofs.



Course Description
Chapter(2)

Set Theory

2.1 Definition of sets.

2.2 Countable and uncountable sets.
2.3 Venn diagrams.
2.4 Proofs of some general identities on sets relation:
i Definition.
ii Types of relation.
iii Composition of relations.
iv Pictorial representation of relation.
v Equivalence relation.

vi Partial ordering relation.



Course Description

Chapter(3)

Function
3.1 Definition
3.2 Type of functions (one to one, into and onto)
3.3 Inverse function, composition of functions.
3.4 Recursively defined functions
3.5 Notion of Proof:

i Proof by counter-example

ii Proof by contradiction

iii Inductive proofs.



Course Description
Chapter(4)

Recurrence Relations and generating functions

2.1 Simple recurrence relations.

2.2 Linear recurrence relations with constant coefficients.
2.3 Solving first order recurrence relations.
2.4 Solving second order linear homogeneous recurrence relation.

2.3 Algebra of generating functions.



Course Description
Chapter(5)

Counting Techniques
3.1 Basic counting principles

3.2 Permutations and Combinations
3.3 The Pigeonhole principle

3.4 The inclusion-exclusion principle

3.5 Ordered and unordered partitions



Course Description

Chapter(6)

Graph Theory

1.4 Introduction.
4.2 Simple graph and multigraph.
4.3 Subgraphs and isomorphic graphs.
4.4 Paths and weighted graphs.
4.5 Labeled and weighted graphs.
4.6 Complete, Regular, and Bipartite graphs.
4.7 Planar graphs.
4.8 Graph coloring.
4.9 Euler and Hamilton graphs.



Reference

1) List Required Texbooks
David J. Hunter, “Essential s of Discrete Mathematics” Third edition, 2015, Jones
& Bartlett Learning. ISBN-13:978-1284056242.

2) List essential references materials (Journals, Reports, etc.)
Kenneth H. Rosen, “Discrete mathematics and its applications” Seventh

edition, 2012, McGraw-Hill. ISBN: 978-0073383095.

3) List electronic materials, Web sites, Facebook, Twitter, etc.
Blackboard.



Lecture(1)
Chapter(1)

Logical Thinking

O Introduction
O Formal Logic.

O Connectives and Propositions.




The goal of this chapter is to help you communicate
mathematically by understanding the basics of logic



Introduction

Why logic is important in computer science?

o Logic is the Calculus of Computer Science. A computer is a
machine that processes data into information using logic.

o So the study of Logic is essential for CS, since Logic is involved
in broad range of intellectual activities and it is a base in many
areas of computer science such as artificial intelligence,
algorithms eftc.



Introduction

o Logic is a systematic way of thinking that allows us to deduce
new information from old information and to parse the meanings
of sentences.

o You use logic informally in everyday life and certainly also in
doing mathematics.

o For example, suppose you are working with a certain circle, call it
“Circle X," and you have available the following two pieces of
information.

1. Circle X has radius equal to 3.

2. If any circle has radius r, then its area is r? square units.
You have no trouble putting these two facts together to get:

3. Circle X has area 9 square units.

o In doing this you are using logic to combine existing information
to produce new information. Because deducing new information is
central fo mathematics, logic plays a fundamental role.



Introduction

Notation

o Isanimportant part of mathematical language.

o We translate a problem to notation and then perform well-
defined symbolic manipulations on that notation.

o This is the essence of the powerful tool called formalism.

o One nice feature of formalism is that it allows you to work
without having to think about what all the symbols mean. In this
sense, formal logic is really "logical not-thinking”.

Example: If we have 5 employees with a monthly salary 1000 SA
for each one, then the total amount of money they earned is to
5000.

By formalism it is only the multiplication of 5 by 1000 i.e
T: total amount of money

E: number of employees

S: salary for each one

T=ES



Connectives and Propositions

o In order to formalize logic, we need a system for translating
statements intfo symbols. We will start with a precise definition
of statement.

Definition: A statement (also known as a proposition) is a
declarative sentence that is either true or false, but not both.

Example:

« 7 is odd.

« 1+1:=4

« If itis raining, then the ground is wet.

o Note that we don not need to be able to decide whether a
statement is true or false in order for it to be a statement.



Connectives and Propositions

o How can a declarative sentence fail to be a statement?
declarative sentence may contain an unspecified term:
X is even.

The truth of the sentence depends on the value of x, so if that
value is not specified, we can not regard this sentence as a
statement.

Examples:
Statements

« July is the first month of the year. (this is a declarative sentence which is false).
e January is the first month of the year. (this is a declarative sentence which is true)
« The number 2 is even. (this is a declarative sentence which is true).

Non-Statements

*  What time is it? (just a question)
* Redis pretfty. (we can't decide)
« 2x+10=14. (x is unknown so we can't decide)



Exercises

Decide whether or not the following are statements. In the case of
a statement, say if it is true or false, if possible.

X + 3 Not Statement

X + 3 =4 Not Statement

If x and y are real numbers and 5x = By, then x = y. Statement, True
The equation x + 2 = 3 has exactly one solution. Statement, True
The equation x + 2 = 3 has more than one solution. Statement, False

o1k wh =


Not Statement

Not Statement

Statement, True

Statement, True

Statement, False


Connectives and Propositions

Propositions can be combined with connectives such as (and) and
(implies to) create compound propositions.

Example:

1. 2 is prime number and 4 + 6 = 10.
2. Today it is raining implies that fomorrow the sun will shine.

Writing out the entire text of a compound proposition can be tedious,
particularly if it contains several propositions. As a shorthand, we will use:
lower case letters (like a, b, ¢, efc.) for simple propositions, and

UPPER CASE LETTERS (like A, B, C, etc.) for compound propositions.

Propositions can be true or false. If we know what truth value to assign one
we can utilize this information. Otherwise, we check what happens when the
proposition is assumed to be true and then false by using a fruth table. The
following truth tables reveal the meaning of the various connectives.



Connectives and Propositions

Connectives:

o The symbols =, A, vV, = and & are called propositional
connectives.

o Their properties are best shown via truth tables.
o Note that (T = True. F = False).

Example: If p is the statement “you are wearing shoes" and
q is the statement “you can't cut your toenails,” then

P —q

* represents the statement, "If you are wearing shoes, then you
can't cut your toenails.”

« We may choose to express this statement differently in English:
"You can't cut your toenails if you are wearing shoes,” or
"Wearing shoes makes it impossible to cut your toenails." 10



Connectives and Propositions

Negation: ( symbol: - )

o Interpretation: — a means "not a”.

a —d
T F
F T

o Column a has all possible Truth values, however column —a
indicates the Truth values for not a.

11



Connectives and Propositions

Conjunction: ( symbol: r )

o Interpretation: a A b means "a and b".

o e

b
T
F
T
F

o >

o Let a and b be propositions. The proposition " a and b" denoted
by a A b, is the proposition that is true when both a and b are
true and is False otherwise.

o The proposition a A b is called conjunction of a and b.

12



Connectives and Propositions
Disjunction: ( symbol: v)

o Interpretation: aVv b means "aor b".

o o+ AR
HoH | S
HoH H <

o disjunction is true whenever at least one of the propositions
is true. This connective is sometimes called inclusive or to
differentiate it from exclusive or (which is often denoted by +).

o The formulaa + b is interpreted as " or , but not both".

13



Connectives and Propositions
Implication: ( symbol: —)

o Interpretation: a — b means "if a then b" (in the mathematical
sense).

s e s R R I -~
s I Rl s R M=

= = 4

o Let a and b be propositions. The implication a—b, is the
proposition that is false when a is true and b is false and frue
otherwise.

o In this implication a is called the hypothesis and b is called the
conclusion. 14



Connectives and Propositions

Biconditional: ( symbol: < )

o Interpretation: a <= b means "a if and only if b"

s B s e R B -1
s R Rl s R N =y

= oo ]

o The biconditional is true exactly when the propositions have the
same truth value.

o In some texts, the phase "is a necessary and sufficient condition
for b" is used for a <> b.
15



Exercises

Express each statement as one of the forms PA Q, Pv Q, or = P.
Be sure to also state exactly what statements P and Q stand for.

1. The number 8 is both even and a power of 2.
2. xFYy
3. There is a quiz scheduled for Wednesday or Friday.

Without changing their meanings, convert each of the following
sentences into a sentence having the form "If P, then Q."

1. Whenever people agree with me I feel I must be wrong.

Without changing their meanings, convert each of the following
sentences into a sentence having the form "P if and only if Q."

1. If xy =0 then x = 0O or y = 0, and conversely.
16



Lecture(2)
Chapter(1)

Logical Thinking

O Introduction
O Truth Tables

O Connectives and Propositions.




Introduction

o Any statement has two possible values: true (T) or false (F). So
when we use variables such as p or q for statements in logic, we
can think of them as unknowns that can take one of only two
values: T or F. This makes it possible to define the meaning of
each connective using tables.

o Notice that each column in the truth table must contains

onumber of statements

18



Truth Tables

o You should now know the truth tables for =, A, v,— and <.
o They should be internalized as well as memorized.
o You must understand the symbols thoroughly, for we now

combine them to form more complex statements.

19



Truth Tables

o For example, suppose we want to convey that one or the other
of P and Q is ftrue but they are not both true. No single symbol
expresses this, but we could combine them as

PvQ A= (PAQ)

which literally means:
Por Q is true, and it is not the case that both P and Q are true.

20



Truth Tables

O

This statement will be true or false depending on the truth
values of P and Q.

In fact we can make a truth table for the entire statement.
Begin as usual by listing the possible true/false combinations of
P and Q on four lines.

The statement (P v Q) A= (P A Q) contains the individual
statements (Pv Q) and (P A Q), so we next counting their truth
values in the third and fourth columns.

The fifth column lists values for = (PA Q), and these are just
the opposites of the corresponding entries in the fourth column.

Finally, combining the third and fifth columns with A, we get the
values for (P v Q)A =(P AQ) in the sixth column.

21



Truth Tables

PRI (Pvg) | (PAQ) | = (PAQ) (Pv@In=3(PrQ)
T | T T T F F
T|F T F T T
F|T T F T T
F | F F F T F

o This truth table tells us that (P v Q)A =(P AQ) is true precisely
when one but not both of P and Q are true, so it has the
meaning we intended.

o Notice that the middle three columns of our truth table are
just "helper columns” and are not necessary parts of the table.

o In writing truth tables, you may choose to omit such columns
if you are confident about your work.

22



Truth Tables

Example:
consider the following statement concerning two real numbers x and y:
The product xy equals zero if and only if x =0o0ry = 0.

Build a truth table for it.

23



Logical Equivalences

Definition:

Two statements are logically equivalent if they have the same T/F
values for all cases, that is, if they have the same truth tables.

Example 1: Consider the following theorem.

If a quadrilateral has a pair of parallel sides, then it has a pair of
supplementary angles.

23



Logical Equivalences

Solution:

o This theorem is of the form p — q where

p is the statement that the quadrilateral has a pair of parallel sides and
q is the statement that the quadrilateral has a pair of supplementary angles.
o We can state a different theorem, represented by -q — -p i.e.

If a quadrilateral does not have a pair of supplementary angles, then it does
not have a pair of parallel sides

o We know that this second theorem is logically equivalent to the first
because the formal statement

p — q is logically equivalent to the formal statement ~q — -p,

as the following truth table shows.

24

o In other words show that P — q is logically equivalent to - q — —p



Logical Equivalences

Pld{pPp—q | j]7P|dq—="p
A I 0 2 B T
T|F F T B F
F [T T 2 T T
F | F i & j b T :

o Notice that the column for p — q matches the column for ~q — -p. Since the

first theorem is a tfrue theorem from geometry, so is the second.




Logical Equivalences

Example 2: If Aaron is late, then Bill is late,
and, if both Aaron and Bill are late, then class is boring.
Suppose that class is not boring. What can you conclude about Aaron?

Solution:
o Let's begin by translating the first sentence into the symbols of logic, using the
following statements.

p = “Aaron is late.”
q = “Bill is late.”
r = “Class is boring.”

o Let S be the statement "If Aaron is late, then Bill is late, and, if both Aaron
and Bill are late, then class is boring.”" In symbols, S translates to the

following. 26



Logical Equivalences

S=(p—=qA[(pAg)>r]

Now let's construct a truth table for S. We do this by constructing
truth tables for the different parts of S, starting inside the
parentheses and working our way out.

Row# [[plqgq | r|p—=q]|pAqg | (pAgq)—T | S
1. || T | T ]| T T T i gh
2. (| T | T|F T T b F
3.|| T|F|T F F T F
4. || T | F | F K b T I3
5. | F|T|T T F th L
6. || F| T|F T F T T
7.1l F|F [T T F T T
8. || F|F [|F T F T T




Logical Equivalences

Row# [|plgq | r|p—=q|pAq | (pAgq)—T | S
1. (| T|T]|T T T el i
2. | T|T|F T T F F
.|| T|F|T F F T F
4. | T| F [ F F b T F
5.(|F|T|T T F eh p§
6. || F|T|F T F T T
7.1l F|F [T T F T T
8. [| F|F | F T F T T

o We are inferested in the possible values of p. It is given that S is true, so we
can eliminate rows 2, 3, and 4, the rows where S is false.

o If we further assume that class is not boring, we can also eliminate the rows
where r is true.

o The rows that remain are the only possible T/F values for p, q, and r: rows 6
and 8. In both of these rows, p is false.

o Inother words, Aaron is not late.




Exercises

Write a truth table for the following:

1. Pv (Q —R).

2. (P/\ —|p)V Q.
3. —|(—|P/\—|Q).

Use truth tables to show that the following statements are logically.
equivalent.

1. PA(QVR)=(PAQ)V (PAR).



Lecture(3)
Chapter(1)

Logical Thinking

O Introduction

O Propositional Logic

Tautology

®  (Contradiction

Contingency

O Equivalences Rules

O Inference Rules




Introduction

o In this section we will develop a system of rule for manipulating
formulas in symbolic logic.

o This system, called the propositional calculus, will allow us to
make logical deductions formally.

31



Introduction

Definition:

o A statements that are always true, no matter what the T/F values
of the component statements are, is called a ftautology, and we
write

(PAq)=p

The notation A = B means that the statement A — B is true in all cases; in
other words, the truth table for A — B is all T's. Similarly, the & symbol denotes a

tautology containing the €= connective.

o There are also statements in formal logic that are never true. A
statement whose truth table contains all F's is called a
contradiction.

o A statement in propositional logic that is neither a tfautology nor 39
contradiction is called a contingency. A contingency has both T's
and F's in its truth table.



Tautology

Example 1:

Use a truth table to show (pAq) — p is a tautology

33



Tautology

Solution

plq|pAq | (pAg)—p
T|T| T T
T|F| F T
F|T| F T
F|F| F T




Contradiction

Example 2:

Use a truth table to show p A —p is a contradiction.




Contradiction

Solution

ey
L e ]

"Il
=]
Tl




Contingency

Example 3:

Use a truth table to show p A qis a contingent




Contingency

Solution

s RSB R L~
e e s R A=
s s s RS -




Equivalences Rules

o Tautologies are important because they show how one statement
may be logically deduced from another.

o For example, suppose we know that the following statements are
true.

Our professor does not own a spaceship.
If our professor is from Mars, then our professor owns a spaceship.

o Every tautology can be used as a rule to justify deriving a new
statement from an old one.
o There are two types of derivation rules:

* equivalence rules.
« inference rules.

o Equivalence rule describe logical equivalences.
o Inference rules describe when a weaker statement can be 39
deduced from a stronger statement.



Equivalences Rules

o The equivalence rules given in following Table could all be checked
using truth tables.

o If A and B are statements (possibly composed of many other
statements joined by connectives), then the tautology A < B is
another way of saying that A and B are logically equivalent.

Equivalence Name

p& mp double negation
p—=qgq&s pVg implication

=(pAqg) < —pV g | De Morgan's laws
~(pVg) e —pA g
pVgegWVp commutativity
pAge=qghp

p A lg Ar) < (p Aqg) A associativity
pVvigvr)e pva v

40



Inference Rules

Modus pones
o When a tautology is of the form (C A D) = E, we often prefer to write
C
= E
D

This notation highlights the fact that if you know both € and D, then you can conclude E.

Example 4: use a truth table to prove the following.

p =g
g4

let S be the statement [p A (p — q@)] — q. We construct our truth 41

Solution:

table by building the parts of S as following



Inference Rules

plqgq|p—=q|pA(p—q)|S
T | T T T T
T|F F F T
F|T i F T
F|F T F T

o Since the column for S is all T's, this proves that S is a tautology.
the tautology in Example 4 is known as modus ponens. We can stated it
as follows.

If the first, then the second;
but the first;
Example: Therefore the second.

« "If you have a current password, then you can log on to the network"
* "You have a current password”
42

Therefore:

“You can log on to the network"



Inference Rules

Modus tollens

o When a tautology is of the form

s

q = —p

L

o Inference rules work in only one direction. An inference rule of the
form A = B allows you to do only on thing:

1. Given A, deduce B.

Example:

*You can't log into the network
* If you have a current password, then you can log into the network
Therefore

* You don't have a current password.

43



Inference Rules

Inference Name
p conjunction
= pAq
_qg
p modus ponens
=4
B
—q modus tollens
= P
P—(q
PAQ=Dp simplification
p=>qVq addition

Example: write a proof sequence for the assertion

P —q >:>T'.
=¥ j

p \

44



Inference Rules

P
p—>4q = T.
i % F
Solution: sStatements Reasons
l.p given
2.p—q given
3.q—r given
4.q modus ponens, 1, 2
5.r modus ponens, 4, 3




Inference Rules
Example:

Use truth tables to establish the modus tollens tautology:

3

q
P9 i

h-:}—tp

Solution:

pla|lq|p=2q](x)A(p—=q) | p | (~g)A(p—=q)]—p
T|T| B T F F T
TI|F| T F F F T
F|T| F T F i i
FIF| T T T i T




Exercises

Show that the following are tautologies:

1. 7(pVqg) = pA—q

2. a = (b = a)

Show that p © (p = -p) is a contradiction:

Show that P V ¢, and p = q are all contingencies

Show that p & --p




Lecture(4)
Chapter(1)

Logical Thinking

O Introduction

O Predicate Logic

®  Quantifiers

®  Translation

Negation




Introduction

o Using symbols a, v, -, = and <, we can deconstruct many English
sentences into a symbolic form.

o As we have seen, this symbolic form can help us understand the logical
structure of sentences and how different sentences may actually have
the same meaning (as in logical equivalence).

o But these symbols alone are not powerful enough to capture the full
meaning of every statement.

o To help overcome this defect, we introduce Predicate Logic in the next
slides.

49



Introduction

o When we defined statements, we said that a sentence of the form

X 1§ even

is not a statement, because its T/F value depends on x.

o Mathematical writing, however, almost always deals with sentences of
this type. we often express mathematical ideas in terms of some
unknown variable.

o This section explains how to extend our formal system of logic to deal
with this situation.

50



Predicate Logic

Predicate Logic deals with predicates, which
are propositions, consist of variables.

51



Predicate Logic

Definition:

predicate is a declarative sentence whose T/F value depends on one
or more variables. In other words, a predicate is a declarative
sentence with variables, and after those variables have been given
specific values the sentence becomes a statement.

We use function notation to denote predicates.
The following are some examples of predicates.

Example 1: P(x) =“x is even,” and } are predicates

Q(x,y) = “x is heavier than y”

The statement P(8) is true, while the statement Q (feather, brick) false.

Example 2:

e B , 52
If E(x) stands for the equation X —X — Y% thenE(3)is ...
EM4)is ...



Predicate Logic

Definition:
The domain of a predicate variable is the collection of all possible values
that the variable may take.

Example 1:

Consider the predicate P(x) = "x? is greater than x “. Then the domain
of x could be for example the set Z of all integers. It could alternatively

be the set R of real numbers.
Whether instantiations of a predicate are tfrue or false may depend on the domain
considered.

Example 1:

Consider the predicate P(x, y) = "x > y", in two predicate variables. We
have Z (the set of integers) as domain for both of them.

* Take x = 4,y = 3, then P(4, 3) = "4 > 3", which is a proposition taking

the value true. 53
» Take x =1,y = 2, then P(1, 2) = "1 > 2", which is a proposition taking

the value false.



Quantification

» Statements like
— Some birds are angry.
— On the internet, no one knows who you are.
— The square of any real number is nonnegative.

MANAGEMENT




Quantifiers

A quantifier modifies a predicate by describing
whether some or all elements of the domain satisfy
the predicate.

We now introduce two quantifiers (describing “parts or quantities” from
a domain), the universal quantification and the existential quantification.

55



Quantifiers

Definition:
A universal quantification is a quantifier meaning “given any” or “for all”
or “for every" . We use the following symbol:

vV (universal quantification)

Example: Here is a formal way to say that for all values that a
predicate variable x can take in a domain D, the predicate is true:

v D
for all = belonging to p

, P(x) (is true)

For example

W ¥
T cR
W —

for all z belonging to the real numbers

=]

56

The statement says that P(x) is true for all x in the domain.



Quantifiers

Definition:
An existential quantification is a quantifier meaning "there exists”,
“there is at least one" or "for some". We use the following symbol:

1 (existential quantification)

Example: Here is a formal way fto say that for some values that a
predicate variable x can take in a domain D, the predicate is true:

z D , P(x) (is true
for some rhelonging to D

For example, for D = { birds }, P(x) = “r is angry”,
dr € D, P(z) (is true).
S

Some birds are angry
L

The statement says that there exists an element x of the domain such that 57
P(x) is true; in other words, P(x) is true for some x in the domain.



Quantifiers

Examples:

Write the following as English sentences. Say whether they are true or false.

1. YxeBx2=0
2. daeR,¥VxeR,ax =x.

3. Yned dmedf m=n+5

58



Translation

There are lots of different ways to write quantified statements in
English. Translating back and forth between English statements and
predicate logic is a skill that takes practice.

Example: Using all cars as a domain, if
P(x) = “x gets good mileage.”
Q(x)="x is large.”
then the statement (vx) (Q(x) — - P(x)) could be translated very literally as
"For all cars x, if x is large, then x does not get good mileage.”
However, a more natural translation of the same statement is

“All large cars get bad mileage."
or

“There aren't any large cars that get good mileage.”

If we wanted to say the opposite—that is, that there are some large cars 59
that get good mileage—we could write the .........ccccooooviecrinerceec s



Translation

Example:

In the domain of all real numbers, let G(x, y) be the predicate "x > y."

The statement (Vy)(3x)G(x,y)

SAYS literally That ... s

60



Negation

Let's interpret the negation rules in the context of an example.

o Not all €S students study hard = There is at least one CS student who does not
study hard

- (VxeD, P(x)) = dxeD, -P(x)

Negation of a universal quantification becomes an existential quantification.

o It is not the case that some students in this class are from Sudan. = All
students in this class are not from Sudan.

- (d xeD, P(x)) = VxeD, -P(x)

Negation of an existential quantification becomes an universal quantification. 61



Negation

Example 1: The universal negation rule says that the negation of “All people
are liars" is "There exists a person who is not a liar.”

Insymbols,  =[(Vx)L(x)] & (Ix)(~L(x)

= [(Vx)P(x)] & (3x)(—P(x))| universal negation
= [(dx)P(x)] <= (Vx)(—FP(x))| existential negation

Negation rules for predicate logic.

Example 2: Discussed what the negation of the statement "All large cars get bad
mileage.”" p(x)=“x gets good mileage.”
Q(x) = “x is large.”

62
(Vx)(Q(x) = =P(x))



Negation

Example 2: Discussed what the negation of the statement "All large cars get bad

mileage.”
(Vx)(Q(x) = =P(x))
Solution:
Equivalence Name
Statements Reasons p< —"p double negation
1. =[(Vx)(Q(x) ——Pi(x)]] given p—q< pVq implication
2. ()~ (Qx)——P(x)) universal negation ~(pAg)e= —~pV q | De Morgan’s laws
3. (30~ (~Q(x) V —~P(x)) implication ~ TJ z — A g _
4, (A (~(—Q(x) A ~(—P(x)))| De Morgan’s law iﬁz - 3 hi commutativity
5. (2)(Q0x) A P(x)) double negation pAl@AD) < (pAQg) A associativity
6. () (P(x) A Q(x)) commutativity pVigvrne(@vag v

Equivalence | Marr

12

|
~[(W0P()] & (2)(~P(x)

universal negation

~[(20P()] & (Vx)(~P(x)

existential negation
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Exercises

In the domain of integers, let P(x, y) be the predicate "x -y = 12." Tell
whether each of the following statements is true or false.

(a) P(3, 4)

(b) P(2,6) vV P(3,7)

© (Vx)(EVP(x, y)

In the domain of all movies, let V(x) be the predicate "x is violent."
Write the following statements in the symbols of predicate logic.

(a) Some movies are violent.

(b) No movies are violent.

: : : : H(x) = “x is heavy.”
In the domain of all books, consider the following predicates. (x) oniss P
C(x) = “x is confusing.’

Translate the following statements in predicate logic into ordinary English. ‘
(a) (Yx)(H(x) — C())

(b) (Vx)(C(x) vV H(x))




Exercises

Translate each of the following sentences into symbolic logic.

1. If fisapolynomial and its degree is greater than 2, then [ "is not constant.

2.
For every positive number ¢, there is a positive number § for which |x—a|< 4
implies |fix)— fla)| < e.

3.

There exists a real number a for which a +x =x for every real number x.

4.

Negate the following sentences:

1. The number x is positive, but the number y is not positive.
2. For every prime number p there, is another prime number q with.
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Introduction

o The truth value of some statement about the world is obvious and easy
to assign.

o The truth of other statements may not be obvious, but it may still
follow (be derived) from known facts about the world.

o To show the tfruth value of such a statement following from other
statements we need to provide a correct supporting argument a proof.
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Introduction

Proof:

o Shows that the truth value of such a statement follows from (or can be
inferred) from the truth value of other statements.

o Provides an argument supporting the validity of the statement.
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Introduction

o It is time to prove some theorems. There are various methods of doing this;
we now examine the most straightforward approach, a technique called direct
proof.

o As we begin, it is important to keep in mind the meanings of three key fterms:
Theorem and proof.

 Premises
e Axioms
 Results of other theorems

o A theorem is a mathematical statement that is true, and can be (and has
been) verified as true (statement that can be shown to be true).

o A proof of a theorem is a written verification that shows that the theorem
is definitely and unequivocally true (shows that the conclusion follows from
premises). A proof should be understandable and convincing to anyone who
has the requisite background and knowledge.

o A definition is an exact, unambiguous explanation of the meaning of a
mathematical word or phrase.



Introduction

Typically the theorem looks like this:

(pl Ap2 Ap3a...aAapn ) —q
— Y

Premises conclusion

Example: Fermat's little theorem

If p 1s a prime and a 1s an mteger not divisible by p.

then: a7 =1 modp




Formal proofs

Formal proofs:

o Steps of the proofs follow logically from the set of premises, hypotheses
and axioms.

o Allow us to infer from new True statements from known True statements.

T \ 7
premises ® | |
T / =9 .g' conclusion
./ e—e \
axioms/ o o @—e® > =0 0—0 0—0
+ /  eme ©
proved \' -0 *—0

True ?

True ‘

Steps of the proof for statements in the propositional logic are argued using equivalence rules.




Formal proofs
Example:
Show (pAq) — p is atautology (page No 33)

Solution:

Proof: we must show (pAq) = p T

Equivalence

1 .
NAme

pe —p

double negation

p—qe pVg

implication

~pAg)eE pV g
~(pVvgle pA g

De Morgan's laws

pVgeqVp
PAGEgAp

commutativity

pArl@Aar) = (pAg) AT

pVigvrie(pvg Vv

associativity

Equivalences Rules page No 40

(pArq)—p === ~(pArqvp Implication

=== [pv—q]lvp DeMorgan

<= [—.q W —'13'] VP Commutative
<=> —qv [ pvp] Associative

== —|q W [ T :|

Negation

Domination
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Informal proofs

Proving theorems in practice:

@)

The steps of the proofs are not expressed in any formal language as e.g.
propositional logic

Steps are argued less formally using English, mathematical formulas and so on
One must always watch the consistency of the argument made, logic and its

rules can often help us to decide the soundness of the argument if it is in
question.

We use (informal) proofs to illustrate different methods of proving theorems
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Methods proof

o The types of proofs we did in the previous were fairly mechanical.

o We started with the given and constructed a sequence of conclusions, each
justified by a deduction rule.

o We were able to write proofs this way because our mathematical system,
propositional logic, was fairly small.

o Most mathematical contexts are much more complicated; there are more
definitions, more axioms, and more complex statements to analyze.

o These more complicated situations do not easily lend themselves to the
kind of structured proof sequences of (propositional logic).

o In the next slide we will look at some of the ways proofs are done in
mathematics.
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Direct proof

o The structure of a proof sequence in propositional logic is
straightforward: in order to prove A = C, we prove a sequence of results.

A=B =B, =B, =C

o A direct proof in mathematics has the same logic, but we don't usually
write such proofs as lists of statement and reasons.

o p — q is proved by showing that if p is true then q follows

Outline for Direct Proof

Proposition If P, then Q.

Proof. Suppose P.

75

Therefore Q. |




Direct proof

Example:

Prove the following statement.

For all real numbers x, if x = 1, then x* = 1.

Proof




Exercises

Use the method of direct proof to prove the following statements.

1. If x is odd, then x? is odd.

2

2. If x is an even integer, then x* is even.

3. If @ is an odd integer, then a®+3a +5 is odd.

4. Suppose x,ye Z. If x is even, then xy is even.

Recall that:
Suppose x is odd. Then

x=2a+1 for some ae Z, by definition of an odd number.

Suppose x is an even integer. ‘

Then x = 2a for some a € 7, by definition of an even integer.
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Introduction

The theory of sets is a language that is perfectly suited
to describing and explaining all types of mathematical
structures.
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Introduction

©)

We will explore different ways that the elements of a set can be related
to each other or to the elements of another sef.

These relationships can be described by mathematical objects such as
functions, relations, and graphs.

Our goal is to develop the ability tfo see mathematical relationships
between objects, which in turn will enable us to apply tools from discrete
mathematics.
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Introduction

o Sets are used to group objects together. Objects in a set have similar
properties.

o For instance, all the students who are currently enrolled in your class
make up a set. Likewise, all the students currently taking a course in
discrete mathematics at any class make up a set.

o The language of sets is a means to study such collections in an organized
fashion.

o We now provide a definition of a set.

31



Definition of sets

The simplest way to describe a collection of related objects is as a sef.

o Think of the set S as a container where an object x is something that S contains.

o Wewrite x € 5 to denote that x is contained in S.

" w

o We also say that "x is a member of S"" x is an element of S" or more simply, "x

isin S." 82



Definition of sets

Definition:

A set 1s an unordered collection of objects, called elements or members of the set. A set 1s
said to contain its elements. We write g € A to denote that o 15 an element of the set A. The

notation ¢ & A denotes that @ is not an element of the sei A,

Example:

M= [0.1.2,3, ...}. the st of natoral numbers
L=...-2,-1.0,1,2 ] the set of integers

LT =(1,23,._.], the set of positive integers

Q={pfg | pe i g andg = 0}, the set of rational numbers
R. the set of real numbers

R™. the set ol positive real numbers

C, the set of complex numbers,

It is common for sets to be denoted using uppercase letters. Lowercase letters are
usually used to denote elements of sets.




Definition of sets

Membership and Containment

o We can describe examples of sets by listing the elements in the set or by
describing the properties that an element in the set has.

o To say that set S consists of the elements X, Xy, ..., X, we write

SR T T

o Suppose there is some property p that some of the elements of a set S have. We
can describe the set of all elements of S that have property p as

{x €S

x has property p}.

This is sometimes called "set builder” notation, because it explains how to build a list of 84
all the elements of a seft.



Definition of sets

Example: letA=4{1,2,3,4,5,6,7,8.Then2c€ Aand 9 & A. If

B={xe€A| x is odd},

then the elementsof Bare ........oooovoooeveeveiee

Example: describe a set is to use set builder notation.

« The set of all real numbers can be Written Qs ..o,

* The set of all odd positive integers less than 10 ...,

85



Definition of sets

Example: here are some further illustrations of set-builder notation.

1. {n:n is a prime number}=42,3,5,7,11,13,17,...
2. ineM:n is prime} =12,3,5,7,11,13,17,...}

3. {n*:nez}=10,1,4,9,16,25,.. ]

4. lxeR:x*-2=0}={v2,—v2}

5. xeZ:x"-2=0=¢

6. [xeZ:lxl<4}=1/-3-2,-1,0,1,2,3]

7. [2x:x€Z,|x| <4} =|-6,-4,-2,0,2,4,6)

8. lxeZ:|2x|<4}={-101}

E




Definition of sets

Equal sets
Definition:

Two sets are egual if and only if they have the same elements. Therefore, if A and B are sets,

then A and B are equal if and only if Yx{x € A «+ x € B). We write A = B il A and B are
equal sets,

Example:

The sets [1, 3, 5) and {3, 5, 1] are equal, because they have the same elements, Note that the
order in which the elements of a set are listed does not matter. Note also that it does not matter

il an element ol a set 15 listed more than once, s0 (1. 3, 3, 3, 3,3, 5.3} 15 the same as the sel
11, 3, 5] because they have the same elements, 4




Definition of sets

THE EMPTY SET There is a special set that has no elements. This set 1s called the empty set,
or null set, and is denoted by Y. The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces that encloses all the elements in this set). Often, a set of

elements with certain properties turns out to be the null set. For instance, the set of all positive
integers that are greater than their squares 18 the null set.




Definition of sets

Size of a set

Definition:

Lt & be a set. If there are exactly n distinct elements in § where n is a nonnegative integer,
we say that 5 is a findte ger and that n 15 the cardinafity of 5. The cardinality ot § is denoted

by | 5],

Example:
Let A be the set of odd positive integers less than 10. Then |A| = 5.

Let § be the set of letters in the English alphabet. Then | S| = 26.

Because the null set has no elements, it follows that |#i| = 0.

A set 1s said to be infinite 11 11 18 not linite.

Example:

The set of positive integers 1s infinite.




Definition of sets
Subsets
Definition:

The set A 15 a subser of B if and only if every element of A is also an ¢lement of B, We use
the notation A € B to indicate that A 15 a subset of the set B.

Wesee A = B thatif and only if the quantification %xix = A — v £ B}

Showing that A is a Subsel of B To show that A € B, show that if x belongs to A then x
also belongs o B,
Showing that A is Nob g Subset of B To show that A € B, find a single x € A such that
I @B,
Fact

The null set ¢ is a subset of every set, that is ¢ € A
whenever A is set.

Note that every set 1s a subset of itself.




Definition of sets

Example: be sure you understand why each of the following is true.

2,3,7}<12,3,4,5,6,7)
2,3,7) ¢ {2,4,5,6,7
Eﬂ?}{iﬂﬂ

oW

Fact

If a finite set has n elements, then it has 2" subsets. ‘




Definition of sets

Power Set

A Power Set is a set of all the subsets of a set and denoted by P(5).

Example:
For the set {a,b,c}:
These are subsets: {a}, {b} and {c}
And these are subsets: {a,b}, {a,c} and {b,c}
And {a,b,c} is also a subset of {a,b,c}
And the empty set {} is a subset of {a,b,c}

And when we list all the subsets of S = {a,b,c} we get the Power Set of {a,b,c}:
P(S) = {{}, {a}, {b}, {c}, {a, b}, {a, c},{b, c}, {a, b, c} }

How Many Subsets
Easy! If the original set has n members, then the Power Set will have 2" members.

Example:
in the {a,b,c} example above, there are three members (a,b and c).
So, the Power Set should have 23 = 8, which it doesl!



Definition of sets

Cartesian Product of Sets

The Cartesian product (or cross product) of A and B, denoted by A x B, is the
set

A X B={(a,b)| ae Aand b € B}

Example:

If A={2,3,4}and B={4,5}

a) AXB={(2,4),2,5)(3,4).3,5).(4,4)4, 5)}
b) B XA ={(4,2),4,3),4,4),5,2),5,3),5, 4)}
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Exercises

List the members of these sets.

a) {x | x is a real number such that x* = 1)

b) {x | x is a positive integer less than 12]

¢) {x | x is the square of an integer and x < 100}
d) {x | x is an integer such that x2=2

Use set builder notation to give a description of each of these sets,

a) {0,3,6,9,12}
b) {-3,-2,-1,0,1,2,3]

For each of these pairs of sets, determine whether the first is a
subset of the second, the second is a subset of the first.

a) the set of airline flights from New York to New Delhi,

the set of nonstop airline flights from New York to
New Delhi M



Exercises

Determine whether each of these pairs of sets are equal.

a) {1,3,3,3,5,5,5,5,5).{5,3, 1)
b) {13}, {1, {1}} ¢) 0, {0}

List all the subsets of the following sets.

a. 11,2,3.4}

b. &}

1
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Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.




Set operations

Veen diagram

A Venn diagram is a drawing, in which circular areas
usually sharing common properties.

Venn Diagram:
Union of 2 Sets

represent groups of items

casey

drew

Venn Diagram:
Intersection of 2 Sets
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Set operations

Universal set

It's a set that contains everything.

Well, not exactly everything. Everything that is relevant to our question.

Then our sets included integers. The universal set for that would be all the integers.

4 03
7o a;g%%
231 -g 7.1



http://www.mathsisfun.com/whole-numbers.html

Set operations

Union
Definition:

Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x
belongs to A or x belongs to B.

This tellsus that AUB =1{x|xc Avxe B}

100



Set operations

AL B is shaded,

Example:

The wnion of the sets {1,3.5) and [1,2,3} is the set {1,2.3,5}: that is,
(1,3, 5)U{l,2,3} =1{1.2,3,5]. <




Set operations

Intersection

Definition:

Let A and B be sets. The intersection of the sets A and B, denoted by AN B, 15 the set
containing those elements 1n both A and B.

An element x belongs to the intersection of the sets A and B if and
only if x belongs to A and x belongs to B.

This tellsus that ANB={x|x e A A x € B}.
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Set operations

A M B s shaded.

Example:

The intersection of the sets [1.3.5) and [1,2,3) 15 the set [I,3); that 1s,
(1,3,5)n (1.2, 3) = (1,3 “




Set operations
Disjoint

Definition:

Two sets are called disjoint if their intersection 15 the empty set.

Example:

Let A =1{1,3,5,7,9 and B = {2,4,6,8, 10}. Because AN B =¥, A and B are disjoint.




Set operations

Difference

Definition:

Let A and B be sets. The difference of A and B, denoted by A — B, 15 the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement
of B with respect 1o A.

An element x belongs to the difference of A and B if and only if x

belongs to A and x not belongs to B.

This tellsusthat A —B=[{x|xe Arx ¢ B).

Remark: The difference of sets A and B is sometimes denoted by A\ B. 105



Set operations

L

’

A — B is shaded.

Example:

The difference of {1, 3, 3} and |1, 2, 3} 15 the set [3}); that is, {1, 3,3} — {1, 2, 3} = {3}. This
15 different from the difference of {1, 2, 3} and {1, 3, 53}, which 1s the set {2} 4




Set operations

Complement of a set
Definition:

Let U7 be the universal set. The complement of the set A, denoted by A, 18 the complement
of A with respect to [J7. Therefore, the complement of the set A 1s I7 — A.

An element belongs to A if andonly if x & A.
This tells us that A= {x e U | x ¢ A}.

Remark: the complement of set A is sometimes denoted by A 107



Set operations

A is shaded.
Example:

Let A = {a, e, i, o, u} {where the universal set is the set of letters of the English alphabet). Then
A=l{b.c.d, fieg . h,j k. l.m,n, p,g,r,s, t,v,w,x,v,z]. -

Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2. 3.4, 5.6,7.8, 4, 10}. «




Set operations

Generalized Unions and Intersections

Suppose A, B, and C are sets. Note that

o AUBUC contains those elements that are in at least one of the
sets A, B, and C.

o ANBNC contains those elements that are inall of A, B, and C.

o These combinations of the three sets, A, B, and C, are shown below

far o L L O s slded, WA MNE NC s shoaled




Set operations

Union of a collection
Definition:

The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation A; U A, u-- U4, =4,

to denote the union of the sets A;. Ax..... A,.

Example: Fori=1,2,..,letA; ={i,i +1.i+2,...}. Then,

i I
Jar={Jit+1i+2..y=(1.2.3...], ‘
i=1 i=l




Set operations

Intersection of a collection
Definition:

The intersection of a collection of seis is the set that contains those elements that are members
of all the sets in the collection.

|

We use the notation AN AN -1 A, = ﬂ A

to denote the union of the sets A;. Ax..... A,.

Example: Fori=1,2,..,letA; ={i,i +1.i+2,...}. Then,

Fi i3
ﬂf-’tf—ﬁ{i,i-|—1,:'+2.,...}—{.ra,u—l—l._.ri—l—l...}—ﬂ,,.
i=l i=l




Exercises

Let A={1,2,3,4,5) and B = {0, 3, 6). Find
a) AUB. b) AN B.
¢) A~ B, d) B~ A,

Let A=1{0,2,4,6,8,10), 8 =10,1,2,3,4,5,6), and
C =14,5,6,7,8,9, 10]. Find

a) ANBNC. hy AUBUC,

¢) (AL BYNC, d)y (AN YU C,

Draw the Venn diagrams for each of these combination of the sets A, B, and C.

a) AN(B—-C) by (ANBIU(ANC)
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Introduction

Set identities
o The following table list the most important set identities. We will prove
several of these identities here using different methods.

o One way to show that two sets are equal is to show that each is a subset
of the other.

o Recall that to show one set is a subset of a second set, we can show that
if an element belongs to the first set, then it must also belong to the second
seft.

o We generally use a direct proof to do this
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Set identities

Identity Name Identity Name
AUgp=A AUB=BUA v
® Identity laws C'l]ﬂ]].‘tlllfa’[l"b
ANU=A ANB=BnNA e laws
AulU=U . AU(EUE):{AUB)UE Associative
Donunation laws ~
Ang¢=0o AN(BNnC)=(ANB)NC laws
AU A=A AN(BUC)=({AnB)U(ANC)| Distributive
Idempotent laws
ANnA=A4 AU(BNC)=(AUB)N(AUC) laws
— Complementation AUB=ANB De Morgan’s
@ =4 laws ANB=AUB laws
Table 1
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Set identities

To prove statements about sets, of the form E: = E2

(where Es are set expressions), here are three useful techniques:
Prove E1 <€ E2 and Ez € E1 separately.

 Use logical equivalences.

« Use a membership table.

116



Proof by subset

Theorem let A and B be sets. Then A1 E — A U B.

Proof we will prove that the two sets A 1 B and A 'J B are equal by showing
That each set is a subset of the other.

We will showthat AN B AU B.

We do this by showing that If x is in A" B then it must also be in AU B.

Now suppose that x € A M B. By the definition of complement, x € A N B.
Using the definition of intersection, we see that the proposition —{{x € A} A (x € B})1s true.

By applying De Morgan’s law for propositions, we see that —=(x € A) or =(x € B).

Using the definition of negation of propositions, we have see that x & A or x & B,
Using the definition of the complement of a set, this implies that x = A or x € B.

Consequently, by the definition of union, we see that 117
xre AU B, We have now shownthat AN A © AU R,



Proof by use subset

Show that A UBC ANE.

¢
L




Proof by use logical equivalences

Show that
ANB=AUB.
Proof
ANB={x|x¢ AN A by defimtion of complement
= {,1: | —I{,.‘l;' e {A M B}}} by definition of does not belong symbaol
=[x |—{xcAnrxec B) by defimition of intersection
={x|—-(x e A)v —=(x € B)} hy the first De Morgan law for logical equivalences
={x|x¢gAvxgB) by defimition of does not belong symbaol
=[xr|xeAvreB) by definition of complement
=[x |x¢ AU E] by delimtion of umon

=ALB by meaning of set builder notation




Proof by use logical equivalences

Showthat AUE = ANB




Proof by use a membership table

o Set identities can also be proved using membership tables.

 To indicate that an element is ina set, a 1 is used:;
« To indicate that an element is not in a set, a O is used.

Example:

Use a membership table to show that AM{BUC) = (AN By J(ANC).
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Proof

Proof by use a membership table

(AN BIUANC)

]

Andd

0

()

ANA

AN

BLUC




Set identities

o Set identities can also be proved using logical equivalences.

Example: Let A, B, and C be sets, Show that AU (BN )= (C U BN A.

Proof
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Set identities

Important Rules (inclusion-exclusion principle):

o If we have 2 disjoint sets A and B, the cardinality for their union is

|AU B| = |A| + |B|

o But if they are not disjoint then the previous relation becomes:

AUB| = |A| + |B| - |ANB]

Example: The Masters of the KFU at a CS college accepts members who have 2400 SAT
scores or 4.0 GPAs in high school. Of the 11 members of the CS, 8 had 2400 SAT scores,
and 5 had 4.0 GPAs. How many members had both 2400 SAT scores and 4.0 GPAs?

Solution:
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Set identities

It is easy now to conclude the rule for 3 sets as:

(AUB)UC|=|AUB|+|C|—|(AUB)NC|. comes from previous one

=|A|+|B|l—|AnB|+|C]|—|[(AnC)U (B nC)|

= Al + Bl +[Cl=[ANB|=[(AnCO)-[(BNO)|+[AnBNC]
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Exercises

Assume that A is a subset of some underling universal set U.

a) Prove the complementation law by showing that 7 — 4.

Let A and B be sets. Prove the commutative laws in Table 1 by showing that

a) AUB=081JA.
b) ANB=8BMNA.

Prove the De Morgan law in Table 1 by showing that if A and B are sets, then AUB=ANE
a) by showing each side is a subset of the other side.

b) Using a membership table.

126



Lecture(9)
Chapter(2)

Set Theory

O Introduction
O Relations on a set
O Properties of relations

O Equivalence relations




Introduction

o The most direct way to express a relationship between elements of

two sets is to use ordered pairs made up of two related elements.

o For this reason, sets of ordered pairs are called binary relations.
o We introduce the basic terminology used to describe relations and

their types.
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Relations on a set

Binary relation

Definition:
Let A and B be sets. A binary relation from A to B 1s a subsetof A x B.

In other words, a binary relation from A to B is a set R of ordered pairs where
the first element of each ordered pair comes from A and the second element
comes from B.

We use the notation a R b to denote that (a.b) £ R and a R b to denote that (a. b) ¢ R.
Moreover, when (a, b) belongs to R, a is said to be related to b by R.

Example:

Let A =1{0,1,2}and B = {a, b}. ﬂ-\

Then {(0, a), (0, &), (1, a), (2, )} is a relation from A to B.

LI

This means. for instance. that O R a. but that 1 R b, oh

/'

T

Using arrows to represent ordered pairs from A to B




Relations on a set

Relation on a set

Definition:

A relation on a set A is a subset R A x A.

In other words, a relation on a set A is a subset of A x A.
Example:

Let B=10,1,2,3,4,5}{, and consider the following set:

U =1(1,3),(3,3),(5,2),(2,5),(4,2)} =B x B.

0 1 2

Then U is a relation on B because U < B x B. ()//0

3 4 D



Relations on a set

Example:
Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {{(a, b) | a divides b}?

Solution: Because (a, &) is In R if and only if ¢ and b are positive integers not exceeding 4 such
that ¢ divides b, we see that

R=1{(1,1),(1,2),(1,3), (1, 4), (2. 2), (2, 4), (3. 3), (4, 4)}.

Example: Consider these relations on the set of integers:
Ri={{a,b)|a=b}
Ky = {{a,b) | a = b},
Ry=1{la,b) |a=Dbora = —b},
Ryi={{a,b) | a=b}
Rs = {{a,b) |a =5+ 1),
Ry = {{a,b)|a+b <3}

Which of these relations contain cach of the pairs (1, 1), (1, 2), (2, 1), (1, —1), and (2, 2)?

Solution: The pair (1, 1) is In By, K3, R4, and Rg; (1,2) is in By and Rg; (2, 1) 1s in K>, Ks,
and Rg; (1, —1) 1s in By, Ry, and Rg; and finally, (2, 2) is in K1, B3, and R4. -«




Properties of relations

o There are several properties that are used to classify relations on a
seft.

o We will infroduce the most important of these here.
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Properties of relations
Reflexive

In some relations an element is always related to itself.

Definition:

A relation R on a set A is called reflexive if (a, a) € R for every element o € A.

Remark: Using quantifiers we see that the relation R on the set A is reflexive if Wa((a, a) € R)

Example 1:

Consider the following relations on {1, 2, 3, 4}:

Ry = ((1, 1), (1,2),(2,1),(2,2), (3, 4), (4, 1), (4, 4)),
Ry ={(1,1),(1,2), (2, 1)},

Ry = [(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

Ra={(2. 1), (3, 1), (3.2}, (4, 1), (4, 2), (4, 3)},

Rs = {(1, 1), (1,2),(1,3),(1,4),(2,2), (2, 3),(2,4), (3, 3), (3, 4), (4. 4)},

H{:h - [{3! 4'}}'

Which of these relations are reflexive?




Properties of relations

Solurion: The relations Ry and Rs are reflexive because they both contain all pairs of the form
(a, a), namely, (1, 1). (2,2). (3, 3). and (4, 4). The other relations are not reflexive because
they do not contain all of these ordered pairs. In particular, Ry, K2, R4, and Ry are not retlexive
because (3, 3) is not in any of these relations. 4

Example 2: Is the “divides” relation on the set of positive integers reflexive?
Justify your answer.

Example 3: If we replace the set of positive integers with the set of all

integers is it reflexive? Justify your answer.
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Properties of relations
Symmetric

In some relations an element is related to a second element if and only if the
second element is also related to the first element.
Definition:

A relation R onaset A 1s called symmerricit (b, a) € R whenever(a, ) € R, toralla, b € A.
A relation R onaset Asuchthatforalla,be A, if(a,b)e Rand (b, a) € R, thena=hb
is called antisvmmetric.

Remark: Using quantifiers we see that the relation R on the set A is symmetric if

Ya¥bh{{a,. by e R — (b, a) € R)

Similarly, the relation R on the set A is antisymmetric if

Ya¥b(({a.b) e R n (b,a)e B) — (a = b)).
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Properties of relations

Example 1:
Consider the following relations on {1, 2, 3, 4}:

Ry = [(1, 1), 01,2), (2, 1), (2, 2), (3. 4), (4, 1), (4, &),

K= {(1, 1), (1,2), (2, 1)},

Ry={(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

Ra={(2, 1), (3, 1), (3, 2), (4, 1), (4. 2), (4, 3)}.

Rs = {(1, 1), (1,2),(1,3),(1,4),(2,2),(2,3),(2,4), (3, 3), (3, 4), (4. 9},

Hﬁ - [{3! 4}}'

Which of the relations are symmetric and which are antisymmetric?

Solution: The relations R+ and Ry are symmetric, because in each case (b, @) belongs to the
relation whenever (a, £) does. For Ra, the only thing to check is that both (2, 1) and (1, 2) are
in the relation. For K+, it is necessary to check that both (1. 2) and (2, 1) belong to the relation,
and (1.4) and (4, 1) belong to the relation. The reader should verify that none of the other
relations is symmetric. This is done by finding a pair {«.b) such that it 15 in the relation

but (b, @) 1s not.

Ry, Rs,and Ry are all antisymmetric. For each of these relations there is no pair of elements
a and b with @ % b such that both (a, b} and (b, a) belong to the relation. The reader should
verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b)

with ¢ = b such that (a, b) and (b, a) are both in the relation.

4

)




Properties of relations

Example 2: Is the "divides" relation on the set of positive integers
symmetric? Is it antisymmetric?
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Properties of relations

Transitive

Let R be the relation consisting of all pairs {x, ¥) of students at your school, where x has
taken more credits than v, Suppose that x is related o y and v is related to z. This means
that x has taken more credits than v and v has taken more credits than z. We can conclude
that x has taken more credits than z, so that x is related o z. What we have shown is that R has
the transitive property. which 1s defined as follows.

Definition:

A relanon R on a set A 15 called rransitive if whenever {(a.b) e B and {b,c) € R,
then {(a.c) e R.forall a. b. ¢ € A.

Remark: Using quantifiers we see that the relation R on the set A is transitive if we have

Vav¥bve(((a, by e R an(b,c) € R) — (a,c) € R).




Properties of relations

Example: Consider the following relations on {1, 2, 3, 4}:

Ry={(1. 1), (1,2), (2, 1), (2, 2). (3. 4), (4, 1), (4, 4)).

Ra={(1, 1), (1,2), (2, 1)},

RKy= {1, 1), (1,20, 0,4, (2, 1), (2. 2), (3,3, (4, 1), (4, 43},

Ra={(2, 10 (3, D, (3 2), (4, 1), (4,2}, (4, 3)].

Rs={(1, 1), (1,2), (1. 3), (1,4), (2, 2), (2, 3). (2, 4), (3, 3), (3, 4), (4. 43},
Rs = [(3, 4)].

Which of the relations are transitive?

Solurion: Ra, Rs, and Ky are transitive. For each ol these relations, we can show that it 1s
transitive by verifying that if (o, b) and (b, ¢} belong to this relation, then (a, ¢) also does, For
instance, K is transitive, because (3, 2yand (2, 1), (4, 2y and (2, 1), (4, 3) and (3, 13, and (4, 3)
and (3. 2) are the only such sets of pairs, and (3, 1), (4. 1), and (4, 2) belong to Rz The reader
should verify that K5 and Ry are transitive.
Ry 15 not transitive becavse (3, 4) and (4, 1) belong to Ky, but (3, 1) does not. K2 is )

not transitive because (2. 1) and (1. 2) belong to K. but (2, 2) does not. K3 1s not transitive
because (4, 1) and (1, 2) belong to B3, but (4, 2) does not. 4




Equivalence relations

Definition:

A relation R on a set S is an equivalence relation if it satisfies all three
of the following properties.

1. Reflexivity. Foranya € S, a R a.
2. Symmetry. Foranya, b€ S, aRb < bRa.
3. Transitivity. For anya, b, c € S,ifaRband bR ¢, then a R c.

In other words, an equivalence relation is a relation that is reflexive,
symmetry, and transitive.
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Equivalence relations

Example:

Define a relation on Z by a R b if a* = b=.

(a) Prove that R is an equivalence relation.

Solution:

Proof Since a? = @, a R a for any a € Z, so R is reflexive. Suppose a R b. Then a? = b?,
so b = a* and b R a. Thus R is symmetric. Finally, suppose a R b and bRc. Then a® =
b? and b? = ¢?, so a? = ¢?, and a R c. Therefore R is transitive.




Exercises

List the ordered pars i the relation R from
A=[0L1,2, 34} w B ={0,1,2, 3], where (a,b) e R
if and only it

a) a=hb. b) a+ b =4,

¢l a = b d) a | 5.

e) ged{a, b) = 1. £y lemia, &) = 2.

For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, whether it is symmetric, whether
it 1s antisymmetric, and whether it is transitive.

a) {(2,2),(2,3),(2,4),(3,2),(3,3),3,4)}
b) {(1,1),(1,2),(2,1),(2,2),(3,3), (4, 4)]
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Introduction

In many instances we assign to each element of a set a particular
element of a second set (which may be the same as the first).

For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A, B, C, D, F}. And
suppose that the grades are A for Amal, C for Camila, B for Bashayer,
A for Ali, and F for Fadhal. This assignment of grades is illustrated as
following

Amal . _,F' A
Camila — o~ web
__:_'____1.:'*’- . _
Bashayer ®— e (
Ali o o D
Fadhal . - F

« This assignment is an example of a function and are just special kinds of relations.

« Function is extremely important in mathematics and computer science (for example, are
used in the definition of such discrete structures as sequences and string, are used to 144
represent how long it takes a computer to solve problems of a given size).



Definition of function
Definition:

Let A and B be nonempty sets. A function | from A to B 1s an assignment of exactly one
element of B to each element of A. We write f(a) = b if b 15 the unique element of B

assigned by the function J to the element a of A. If f is a function from A to B, we write
f:A— B.

Remark: Functions are sometimes also called mappings or transformations.

Definition: Suppose A and B are sets. A function f from A to B

(denoted as f: A — B) is a relation f <A x B from A to B, satisfying the
property that for each a € A the relation f contains exactly one ordered
pair of form (a,b). The statement (a,b)€ f is abbreviated f(a)=b.

Yxvylvy2, (g yDeEfF (x;y2)Ef)=yl=y2 ‘




Definition of function

Example Let X = {1, 2, 3} and Y = {1, 2, 3, 4}. The formula f (x) = x + 1

Defines as function f:X — Y. For this function, f (1) = 2, f (2) = 3, and f (3) = 4.

X > Y

P Y




Definition of function

Definition:

If f is a function from A to B, we say that A is the domain of f and B is the codomeain of f.
If f{a) = b, we say that & is the image of @ and « is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function from A 1o B, we say
that f maps A to B.




Definition of function

Example:

Suppose that each student in a discrete mathematics class is assigned a letter
grade from the set {A, B, C, D, F}. And suppose that the grades are A for Amal,
C for Camila, B for Bashayer, A for Ali, and F for Fadhal. What are the domain,
codomain, and range of the function that assigns grades to students?

Solution:

Let 6 be the function that assigns a grade to student in our discrete
mathematics class. Note that G (Amal) = A, for instance.

The domain of G is the set {Amal, Camila, Bashayer, Ali, Fadhal}.
The codomain is the set {A, B, C, D, F}.

The range of G is the set {A, B, C, F}, because each grade except D is assigned
to some student.
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Definition of function

Example:

Let R be the relation with ordered pairs (Amal, 22), (Camila, 24),

(Bashayer, 21), (Ali, 22), and (Fadhal, 24). Here each pair consists of a
graduate student and this student’'s age. Specify a function determined by this
relation.

Solution:

Example:

Let f: Z — Z assign the square of an integer to this integer. Then, f{x) = x~, where the domain
of j1s the set of all integers, the codomain of £ 1s the set of all integers, and the range of [ 1s )
the set of all integers that are perfect squares, namely, {0, 1,4, 9, ...]. -



Definition of function

Definition: Two functions f:A — B and g: A — D are equal if

f(x)= g(x) for every x€ A.

Observe that f and g can have different codomains and still be equal.
Consider the functions f:Z— N and g:7Z — 7 defined as f(x)=|x|+2 and
g(x)=|x|+2. Even though their codomains are different, the functions are
equal because f(x)= g(x) for every x in the domain.

Definition:

Let i and f; be functions from A to R. Then i + f> and f; f> are also functions from A
to R defined for all x € A by

(fi + f2)(x) = filx) + falx),
(hf2)x) = filx) falx).




Definition of function

Example:

Let f1 and f> be functions from R to R such that f1{x) = x* and f>(x) = x — x%. What are
the functions f1 + f> and f 27

Solution: from the definition of the sum and product of function, it

follows that

(1 + f2x) = fHlx)+ fale) = P Hx—x)=x

and

{fUFZHI} = _1'1[_1- —-1[1] =_1_? __1__1.




Type of functions
One-to-One function

Some functions never assigh the same value to two different domain elements.
These functions are said to be one-to-one.

Definition:

A function [ issaid to be one-ro-one, or an injunction, it and only if f(a) = f(&) implies that
a = b for all & and b in the domain of f. A function is said to be injec tive if it 18 one-to-one.

o . L
h» e
o . e
d & e

e5

Remark: We can expressthat [ isone-to-one using quantifiers as Yavb( f{a) = f(b) — a = h)
or equivalently Yavbia = I — f{a) 5 [{b)), where the umiverse of discourse 15 the domain
of the function.



Type of functions
Example 11:

Suppose that each worker in a group of employees is assigned a job from a set of possible
1obs, each to be done by a single worker. In this situation, the function f that assigns a job
to each worker is one-to-one. To see this, note that it ¥ and y are two ditferent workers, then
Fix) £ fiv) because the two workers v and v must be assigned different jobs. <4
Example:

Determine whether the function f trom {a, b, c.d}to {1.2, 3,4, 5} with f{a) =4, fib) =5,
ficy=1,and f{d) = 3 is one-to-one.

Solution:

Example:

Determine whether the function f{x) = x* from the set of integers to the set of integers is
one-to-one.

Solution: ‘




Type of functions

Onto function

Definition:

A Tunction f from A to B is called onto, or a surjection, if and only if for every element
b € B thereis an elementa € A with f (@) = p. A tunction j 1s called surjective if it 15 onto.

Remark: A function f is onto if ¥Yydx{ f{x) = v}, where the domain for v is the domain of the
function and the domain for v 15 the codomain of the function.

Example:

Let f be the function from {a. b, c.d) o [1, 2, 3} defined by f{a)y =3, fib) =2, fl(c)=1,
and f{d) = 3. Is f an onto function?

. il
Solution: !

i » L
- B [ ‘

d . . E

Because all three elements of the codomain are images
of elements in the domain, we see that f is onto.




Type of functions

Example:

s the function f{x) = x* from the set of integers to the set of integers onto?

Solution:

Example:

Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it.

Examples of different types of correspondences
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Type of functions
Bijective

Definition:

The function [ 1s a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Example:

Let f be the function from {a, b, c.d} to [1,2,3,4) with f{a)=4, fib)=2, f{c)=1, and
fi{d)=3.1s [ abijection?

Solution: The function j 1s one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, [ is a bijection. 4




Exercises

1. Why is f not a function from R to R if
a) flx)=1/x"
by f(x)= 7
) fx) =+ (x7+ 1)

2.

Suppose A = {0,1,2,3.4}, B=12.3,4,5} and f = {(0,3),(1,3),(2,4),(3,2),(4,2)}. State
the domain and range of f. Find f(2) and f(1).
3.

Give an example of a relation from {a,b,c,d!} to {d,e} that is not a function.
4.

A function f: 7 — 7 is defined as f(n)=2n+ 1. Verify whether this function is
injective and whether it is surjective.

5. Determine whether each of these functions from {a, b, ¢, d} to itself is one-to-one
and which functions are onto?

a) fla)=h, fib)=a, fic)=c, fld) =d 156
h) flay=5b, fiby=5h, fic)=d, fld)=r¢
¢ fla)y=d, fib)=b, fic)=rc, fld)=d



Exercises

6.

Determine whether the function f{x) = x + 1 from the set of real numbers to itself is one-to-
one.

7.

Is the function f{x) = x + 1 from the set of integers to the set of integers onto?
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Type of functions

Identity function

Definition: Given a set A, the identity function on A is the function

ig:A— A defined as ig(x)=x for every x€ A.

Example: If A ={1,2,3}, then i4 = {(1,1),(2,2),(3,3)}. Also iz ={(n,n):neZ}.
The identity function on a set is the function that sends any element of
the set to itself.

Notice that for any set A, the identity function i4 is bijective: It is
injective because i4(x) =i4(y) immediately reduces to x = y. It is surjective
because if we take any element b in the codomain A, then b is also in the
domain A, and i4(b)=5b.
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Type of functions

Inverse function

Now consider a one-to-one correspondence f from the set A to the set £. Because [ i1s an onto
function, every element of £ 1s the image ol some element in A. Furthermore, because f 1s also
a one-to-one function, every element ol £ 1s the image of a unigue element ol A. Consequently,
we can define a new function from & to A that reverses the correspondence given by f

Definition:

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element b belonging to B the unique element a in A
such that f{a) = b. The inverse function of f is denoted by _,I"_]. Hence, _,I"_] {b) = a when

fla)=b.

Remark: Be sure not to confuse the function £~ with the function 1/, which is the function
that assigns 1o cach x in the domain the value 1/ (x). Notice that the latier makes sense only

when fix)1s a non-zero real number.




Type of functions

A bijective is called invertible because we can define an inverse of this
function.

A function is not invertible if it is not bijective, because the inverse

of such a function does not exist.

f L by

The Function f~! Is the Inverse of Function f. 161



Type of functions

Example: let A = {a,b,c¢} and B = {1,2,3}, and suppose [ is the

relation f = {(a,2),(b,3),(c,1)} from A to B. Then f~!={(2,a),(3,b),(1,c)}
and this is a relation from B to A. Notice that f is actually a function
from A to B, and f~! is a function from B to A. These two relations are
drawn below. Notice the drawing for relation f~! is just the drawing for f

with arrows reversed.

A B A B
R [

f=1{(a,2),(b,3),(c,1)} f1=12,a).(3,b).(1,¢)}
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Type of functions

Example:

Let f be the function from {a, b, ¢} to {1, 2, 3} such that f{a) = 2. f{b) =3, and fic) = 1.
Is f invertible, and if it 1s, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-
verse function f ! reverses the correspondence given by f.so f~ (1) =¢, f~1(2) = a, and
13y =0» 4

Example: Let  be the function from R to R with f(x) = x°. Is f invertible?

Solution: Because f(—=2) = f(2) =4, | 15 not one-to-one. If an inverse function were defined,
it would have to assign two elements to 4. Hence, f is not invertible. {(Note we can also show
that f 1s not invertible because it is not onto.) <




Type of functions

Example: The function f:R— R defined as f(x)=x3+1 is bijective.

Find its inverse.

Solution:

We begin by writing y =x%+1. Now interchange variables to obtain
x=y3+1. Solving for y produces y = v/x— 1. Thus

flx) = Va—1.

(You can check your answer by computing

F UGN =V -1=Vad+1-1=x.

Therefore f~1(f(x)) =x. Any answer other than x indicates a mistake.)



Type of functions
Composition of function

Definition:

Let g be a function from the set A to the set B and let f be a function from the set B to the
set C. The composition of the tunctions f and g, denoted for all @ € A by f © g, 15 defined
by

(f ogla) = fgla)).

In other words, f o g 15 the function that assigns to the element a of A the element assigned
by f to gia). That is, to find ( f o g)(a) we first apply the function g to a to obtain g{a) and
then we apply the function § to the result g{a) to obtain (f o g)(a) = fi{g(a)). Note that the
composition j o g cannot be defined unless the range of g 15 a subset of the domain ot f.

[ o gla)

Hgtai

fog




Type of functions

Example:

Let g be the function from the set [a, b, ¢} to itself such that g{a) = b, g(b) = ¢, and g(r) = a.
Let f be the function from the set [a, b, ¢} to the set {1, 2, 3} such that f{a) = 3. f{b) =2, and
fic) = 1. What is the composition of f and g, and what is the composition of g and f7

Seduwtion: The  composition feg i1s defined by (fegifa) = figla)) = J(b) =12,
(fog)b)= flgh))= flc)=1and (f cgllc) = flgle)) = fla) = 3.
Note that g o f is not defined, because the range of f is not a subset of the domain of g. 4

Example:

Let f and g be the functions from the set of integers to the set of integers dehned by
fixy=2x+ 3 and g{x) = 3x + 2. What is the composition of  and g7 What is the com-
position of ¢ and 7

Serlution: Both the compositions f o g and g o f are defined. Moreover,

(fog)x) = flg(x)) = fFBx+2) =2Bx+2)+3=6x+7

and

(o ) =g(flxN =@y +3)=32x + ) +2=6x + 11. <4




Recurrence relation

The simplest and most concrete type of recursive object in mathematics is a recurrence relation.
Suppose we wish to define a function

P:N—Z

that inputs a natural number and returns an integer. The easiest way to do this is to give an
explicit formula:

nn+1)
7

To evaluate P(n) for some given n, you just plug n into the formula.

It is always nice to have an explicit formula for a function, but sometimes these are hard to
come by. Often a function comes up in mathematics that is natural to define recursively. Here is
a second way of defining our function P(n):

Pln)=

1 =1
P(n) = =) Equation 1
(n) n+Pn—1) ifn>1. ‘

This is a recursive definition because P is defined in terms of itself: P occurs in the formula that defines P




Recurrence relation

Example: Use Equation 1 to compute P(B)

Solution:

P(5)=5+P(4)
=5+4+P(3)
=5+44+3+P(2)
=54+4+3+2+P(1)
=5+4+4+3+2+1
= 15.




Exercises

1.
Consider the following recurrence relation:

e ifn<0
Hn)=+4 1 gli=lerhi=2
. Hn—1)+H(n—2)—H(Nn—-—3) ifn> 2.

(a) Compute H(n) forn = 1,2, ..., 10.
2.

Suppose A =1{0,1,2,3,4}, B=12,3,4,5} and f = {(0,3),(1,3),(2,4),(3,2),(4,2)}. State
the domain and range of f. Find f(2) and f(1).

3.

There are four different functions f:{a,b} — {0,1}. List them all.




Exercises

4.
(Give an example of a relation from {a,b,c,d} to {d.e} that is not a function.

5.

Suppose A =41,2,3}. Let f: A— A be the function [ ={(1,2),(2,2).(3,1)}, and let
g:A — A be the function g = {(1,3),(2,1),(3,2)}. Find gof and fog.

6. What is the inverse of the function f(x) = 5x -4
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Lecture(12)
Chapter(3)

Function

O Proof by contrapositive
O Counterexamples

O Proof by contradiction




Introduction

We now examine an alternative to direct proof called
contrapositive proof. Like direct proof, the technique of
contrapositive proof is used to prove conditional statements of

the form "If P, then Q."
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Contrapositive Proof

To understand how contrapositive proof works, imagine that you need to prove a
proposition of the following form.

This is a conditional statement of form P = @. Our goal is to show

that this conditional statement is true. Recall that in Page 24 we

observed that P = @ is logically equivalent to ~@Q =~ P. For convenience,
we duplicate the truth table that verifies this fact.

P Q|~Q|~P|P=Q|~Q=>~P
T\T| F | F T T
T | F | T | F F F
F|T| F T T T
F|F | T T T T

According to the table, statements P = @ and ~Q =~ P are different
ways of expressing exactly the same thing. The expression ~Q =~ P is
called the contrapositive form of P = Q.1



Contrapositive Proof

Since P = @ is logically equivalent to ~Q =~ P, it follows that to prove
P = @ is true, it suffices to instead prove that ~@ =~ P is true. If we were
to use direct proof to show ~Q =~ P is true, we would assume ~ @ is true
use this to deduce that ~ P is true. This in fact is the basic approach of
contrapositive proof, summarized as follows.

Outline for Contrapositive Proof

Proposition If P, then Q.

Proof. Suppose ~ Q.

Therefore ~ P. B
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Contrapositive Proof

Example: Suppose xe Z. If 7x +9 is even, then x is odd.

Solution:

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

Then 7x+9=72a)+9=14a+8+1=2(Ta+4)+ 1.
Therefore 7x+9=2b+ 1, where b is the integer 7a +4.
Consequently 7x+9 is odd.

Therefore 7x +9 is not even.
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Counterexamples

Suppose you want to

disprove a statement P. In other words you want to prove that P is false.
The way to do this is to prove that ~ P is true, for if ~ P is true, it follows

immediately that P has to be false.

How to disprove P: Prove ~P.

how to disprove a universally quantified statement such as

VxeS.Px).

To disprove this statement, we must prove its negation. Its negation is

~(VxeS,Plx)) = 3Jxe8,~Px).



Counterexamples

The negation is an existence statement. To prove the negation is true,
we just need to produce an example of an x € S that makes ~ P(x) true,
that is, an x that makes P(x) false. This leads to the following outline for
disproving a universally quantified statement.

How to disprove vxeS,P(x).

Produce an example of an xe S
that makes P(x) false.

How to disprove P(x)= Q(x).

Produce an example of an x that
makes P(x) true and Q(x) false.

In both of the above outlines, the statement is disproved simply by
exhibiting an example that shows the statement is not always true. (Think
of it as an example that proves the statement is a promise that can be
broken.) There is a special name for an example that disproves a statement:

It is called a counterexample.



Counterexamples

Example: For every n e Z, the integer f(n)=n?-n+11 is prime.

Solution:

n‘—3—2—1012345678910

17 13 11 11 13 17 23 31 41 53 67 83 101

fn)

In every case, f(n) is prime, so you may begin to suspect that the conjecture
is true. Before attempting a proof, let’s try one more n. Unfortunately,
f(11)=112-11+11=11% is not prime. The conjecture is false because n = 11

is a counterexample. We summarize our disproof as follows:

DISp.?‘DE}f The statement “For every n € Z, the integer f(n)=n?2—-n+11 is
prime,” is false. For a counterexample, note that for n = 11, the integer

f(11)=121=11-11 is not prime. [



Proof by contradiction

The basic idea is to assume that the statement we want to prove is
false, and then show that this assumption leads to nonsense. We are

then led to conclude that we were wrong to assume the statement was
false, so the statement must be frue.

This is an example of proof by contradiction. To prove a statement P is
true, we begin by assuming P false and show that this leads to a
contradiction; something that always false.

Many of the statements we prove have the form P = @ which, when
negated, has the form P = ~(@. Often proof by contradiction has the form

Proposition
P= Q. J

Proof.

Assume, for the sake of contradiction P is true but @ is false.

Since we have a contradiction, it must be that @ is true. []
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Proof by contradiction
Example: If a,beZ, then a?-4b#2.

Solution

Proof. Suppose this proposition is false.

This conditional statement being false means there exist numbers a and b
for which a,b € 7 is true but a?—4b # 2 is false.

Thus there exist integers a,b € Z for which |a? —4b = 2.
From this equation we get a2 =4b+2=2(2b+1), so a? is even.

Since a? is even, it follows that a is even, so a = 2¢ for some integer c.
Now plug a = 2¢ back into the boxed equation a?—4b = 2.

We get (2¢)?2 —4b =2, so 4¢?—4b =2. Dividing by 2, we get 2¢2—2b = 1.
Therefore 1 =2(c%-b), and since ¢?—b € Z, it follows that 1 is even.

Since we know 1 is not even, something went wrong.

But all the logic after the first line of the proof is correct, so it must be
that the first line was incorrect. In other words, we were wrong to assume
the proposition was false. Thus the proposition is true. [ |




Exercises

1. Show that the statement "Every positive integer is the sumo
of the squares of two integers” is false.

By counterexample

2. Prove that if n is an integer and 3n + 2 is odd, then n is odd.

By contrapositive

3. Give a proof by contradiction of the theorem “If 3n + 2 is odd, then # is odd.”
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Lecture(13)
Chapter(4)

Recurrence Relations

O Sequences, indexed classes of sets.

O  Recursively defined functions.

®  Factorial function

¢ Fibonacci sequence

®  Ackermann function




What animal would come
next in this sequence?



Here is a sequence of numbers.
O 24 6 8 10 12 14 16

What number is going
to come next in this
sequence?
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Sequences

o Sequences represent ordered lists of elements.

o A sequence is defined as a function from a subset of
N to a set S. We use the notation an to denote the
image of the integer n. We call an a term of the
sequence.

Example:

subset of N:




Sequences

Definition

A sequence 1s a function from a subset of the set of integers (usually eitherthe set [0, 1,2, .. .}
orthe set {1, 2, 3, .. .}) to a set 5. We use the notation a, to denote the image of the integer n.
We call a, a term of the sequence.

o A Sequence is a set of things (usually numbers) that are in order in
which repetitions are allowed.
o A succession of numbers
— Listed according to a given prescription or rule
— Typically writtenas ai, az, ... an
— Often shortened to { an }

Example
-1,3,5,7,9, ..
— A sequence of odd numbers 187



Recursively defined functions

o Recursion is defined as the method of defining the functions where
the distinct function is practical within its own definition. A
recursively function has two parts

1. Definition of the smallest argument (f(0) or f(1)),
2. Definition of f(n), given f(n-1), f n-2).

o The recursion process is also used to define a process of repeating
objects in the similar way.
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Recursively defined functions

Example:

An example of recursively defined function is

f(0) =5

f(n) =f(n-1) + 2,

The values of the function are calculated as f (0) = 5,
f(1) =£(1-1) +2 = £(0) + 2

=5+2

=17

f(2) =1£(1) + 2

=7+2

=9
189



Recursively defined functions

Factorial function

o The product of the positive integers from 1 to n is called
"n factorial” an usually denoted by nl; that is
nl=5.4.3.2.1.. n(h-1)(n-2)

o It is also convenient to define O! = 1, so that the function is
defined for all nonnegative integers.

o Thus we have

ol =1, 11=1, 21=21,31=3.21=6,
41-24321=24, 5'=543.2.1=120 and so on
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Recursively defined functions

o Observe that:

B5l=5.41=524=120and 6! = 6.5 = 6.120 = 720
o This is true for every positive integer n; that is, nl = n.(n-1)!

o Accordingly, the factorial function may also be defined as
follows:

Definition: (Factorial function):

a) nl=1ifn=0.
b) nl=n.(n-D! ifn>0.
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Recursively defined functions

o However:
1. The value of nlis explicitly given when n=0 (thus O is a base value).

2. The value of n! for arbitrary n is defined in ferms of a smaller
value of n which is closer to the base value O.

o Accordingly, the definition is not circular, or, in other words, the
function is well-defined.

Example:
Let us calculate 4! Using the recursive definitions.
Solution:

This calculation require the following nine steps:
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Recursively defined functions

1) 4!=4.3!

2) 31=3. 2

3) 21=2. 1!

4) 1!=1.0!
5) 0l=1
6) 1'=1.1=1
7) 2N=9.1=2

8) 31=3.2=6

9) 4!=4.6=24
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Recursively defined functions

Level numbers

o Let P be a procedure or recursive formula which is used to evaluate
f(x) where f is a recursive function and x is the input.

o We associate a level number with each execution of P as follows:
1.  The original execution of P is assigned level 1; and

2. Each time P is executed because of a recursive call, its level is
one more than the level of the execution that made the
recursive call.

o The depth of the recursion in evaluating f(x) refers to the maximum
level number of P during its execution.
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Recursively defined functions

o Consider, for example, the evaluation of 4! Factorial example,
which uses the recursive formula nl=n(n-1)!:

o Step 1 belongs to level 1 since it is the first execution of the
formula. Thus:

— Step 2 belongs to level 2;
— Step 3 to level 3,........Step 5 to level 5.

o In the other hand, s‘reg 6 belongs to level 4 since it is the result
of a return from level 5. In other words step 6 and step 4 belong
to the same level of execution. Similarly,

o Step 7 belongs to level 3; Step 8 to level 2; and step 9 to level 1.
o Accordingly, in evaluation 4!, the depth of the recursion is 5.
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Recursively defined functions

Fibonacci sequence

The Fibonacci Sequence is the series of numbers:

0,1,1,2,3,5,8,13,21, 34, ..

o The next number is found by adding up the two numbers before it.
« The 2 is found by adding the two numbers before it (1+1)
« Similarly, the 3 is found by adding the two numbers before it (1+2),
« And the 5 is (2+3),

and so on!

Example: the next number in the sequence above is 21+34 = 55
It is that simplel

196



Recursively defined functions

Definition: (Fibonacci sequence):

e« Ifn=0orn=1,thenFn=n.
« Ifn>1,then Fn= Fn-2 + Fn-1.

o This another example of a recursive definition, since the
definition refers to itself when it uses Fn-2 and Fn-1. However:

 The base values are O and 1.

* The value of Fn is defined in terms of smaller values of n
which are closer to the base values.

o Accordingly, this function is well-defined.
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Recursively defined functions

Example:

Let a and b be positive integers, and suppose Q is defined recursively
as follows:

b_O if a<b
A@D) =N o bby a1 if b<a

(@) Find: ) Q(2,5), (11) Q(12,5)
(b) What does this function Q do?
(¢) Find the quotient for Q(56861,7) when a 1s divided by b.

Solution:
(a) 1) Q(2,5) =0 since 2<5.
(1) Q(12,5) = Q(7,5)+1

= [Q(2,5)+1]+1=Q(2,5)+2
=0+2=2. 198



Recursively defined functions

(b) Each time b is subtracted from a, the value of Q is increased by 1.

(c) Hence Q(a, b), finds the quotient when a is divided by b. Thus
Q(5861, 7) = 837.
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Recursively defined functions

Ackermann function

o The Ackermann function, named after Wilhelm Achermann, is one
of the simplest and earliest discovered examples of a ftotal
computable function that is not primitive recursive (a function
that can be implemented using only do-loops is called primitive
recursive.)

o Ackermann's function is a computable function that grows faster
than any primitive recursive function.

o So it is a function with two arguments, each of which can be
assigned any nonnegative integer m and n as follows:

n+1 if m=1>0
A(m,n)= ¢ A(m—-1,1) ifm>0andn=20
Aim—-1,A(m,n—-1)) if m>0andn >0,
200



Recursively defined functions

For example, we can fully evaluate in the following way:

A(1,2) =

|
L

U 1(1,0)))
0,4(0,1)))

| |
N Y
u':'
p-l-r

|
-




Recursively defined functions

Example:
Use the definition of the Ackermann function to find A(1,3).
Solution:

We have the following 15 steps in the next slide:

202



Recursively defined functions

1) A(1,3)=A(0,A(1,2))

2) A(1,2)=A(0,A(1,1))

3) A(1,1)=A(0,A(1,0)

4) A(1,0)=A(0,1)
5) A(0,1)=1+1=2
6) A(1,0)=2

7) A(1,1)=A(0,2)

8) A(0,2)=2+1=3
9) A(1,1)=3

10) A(1,2)=A(0,3)

11) A(0,3)=3+1=4

12) A(1,2)=4

13) A(1,3)=A(0,4)

14) A(0,4)=4+1=5

15)  A(1,3)=5 203



Lecture(14)
Chapter(4)

Recurrence Relations

O Recurrence Relations

O  Modeling with recurrence relations
- finding compound interest
- counting rabbits on an island

- Tower of Hanoi Puzzle
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Recurrence Relations

o Previously, we discussed recursively defined functions such as

(a) Factorial function
(b) Fibonacci sequence
(c) Ackermann function.
o Here we discuss certain kinds of recursively defined sequences
{an} and their solution. We note that a sequence is simply a
function whose domain is

N={(1,2,3,.}

o Let us begin with some examples.
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Recurrence Relations

o Consider the following instructions for generating a sequence:
1. Start with 5.
2. Given any term, add 3 to get the next term.
If we list the terms of the sequence, we obtain

5,8, 11, 14, 17, ... (1.)

o The first term is 5 because of instruction 1. The second term is 8 because of
instruction 2 says to add 3 to 5 to get the next term, 8. The third termis 11

because instruction 2 says to add 3 to 8 to get next term 11. By following
instruction 1 and 2, we can compute any term in the sequence.

o If we denote the sequence (1.1) as a1, a2, ..., we may rephrase instruction 1
as

ai=5 (1.2)
and we may rephrase instruction 2 as
az= an1+3. n22. (1.3)
o Takingn=2in(1.3), we obtain
az=a1+3
o By(1.2), a1=5; thus
a2=5+3=8 206

o Equation (1.3) furnishes an example of a Recurrence Relation.



Recurrence Relations

o Many counting problems can be solved by finding relationships just like we
did above.

o Such relationships are called recurrence relations, and are going to be the
focus of the next few lectures.

o We are going to study a variety of counting problems that can be modeled
using recurrence relations.

o We will develop methods here for finding explicit formulae for the terms of
sequences that satisfy certain types of recurrence relations.

o Recurrence Relations Recall that a recursive definition of a sequence
specifies one or more initial terms and a rule or two for determining
subsequent terms for those that follow.

o Recursive definitions can be used to solve counting problems, and that can
often be a good thing, because finding a closed formula for a recurrence
relation and then using it to explicitly and quickly calculate a term for a
particular integer is much quicker than calculating the term all the way up
from the initial term—the base case, in a sense. 207



Recurrence Relations

Definition: A recurrence relation for the sequence {an} is an equation that
expresses an in terms of one or more of the previous terms of the sequence,
namely, ao, ai,......,an1, for all integers n with n > no, where no is a nonnegative

integer. A sequence is called a solution of a recurrence relation if its terms
satisfy the recurrence relation.

Examples:

Let {a, | be a sequence that satisfies the recurrence relation a, = a,— +3ftorn = 1,2, 3, ...
and suppose that ag = 2. What are ay, a2, and a3?

Solutnion: We see from the recurrence relation that @) = ap+ 3 = 2+ 3 = 5. It then follows

thatay =5+3=8anday; =8+ 3 =11. 4
Let {ayl be a sequence that satishes the recurrence relation a, = a, 1 — a2 for n =
2,3, 4, ..., and suppose that ap = 3 and ) = 5. What are a2 and a7

Solution: We see from the recurrence relation that a; = a) —ap=5—-3=2and a3 = a, — |

g = 2 — 5= —3. Wecan lind a4, as, and each successive term 1n a similar way. 4



Recurrence Relations
Definition

The Fibonacct sequence. fo. f1, f2. ..., 15 defined by the initial conditions fp =0, f1 = 1,
and the recurrence relation

Jr;r — .l'r.l.l—l _|_J|r'”_3

forn=2_4.4_....

Example:
Find the Fibonacci numbers fs, f3. (4. f5, and fg.
Solurion: The recurrence relation for the Fibonacei sequence tells us that we find successive
terms by adding the previous two terms. Because the initnal conditions tell us that f = 0 and
f1 =1, using the recurrence relation in the definition we find that
fr=h+h=1+0=1,
h=hth=1+1=12,
fa=fith=2+1
fs=fat+ f=3+2=35, -
fa=fs+ fa=53+3=8

I
(N ]




Recurrence Relations

Example:

1. What is are the first terms of a sequence defined by the f recurrence relation
an=an1+(2n-1); a1=1?

-—a1=1
'a2=
- as
- a4
= dn

2. What recurrence relation defines:
1,3,9,27,81,.. or 3" forn=0,1,2,3,..?

-do =
-an=

3. Consider the following sequence which begins with the number 3 and for
which each of the following terms is found by multiplying the previous term by
2: 3,6,12, 24,48, ... Find the defined recursively. 210



Recurrence Relations

Example:

Determine whether the sequence {a,}, where a, = 3n for every nonnegative integer n, is a
solution of the recurrence relation a, = 2a,—1 —ay—2 torn =2, 3,4, .. . Answer the same

question where a,, = 2" and where a, = 5.

Solution: Suppose that a, = 3n for every nonnegative integer n. Then, for n = 2, we see that
a1 —dy—r =23 n — 1)) — 3(n — 2) = In = a,. Theretore, {a,}, where a, = 3In, is a so-
lution of the recurrence relation.

Suppose that g, = 2" for every nonnegative integer n. Note thatay = 1l.ay = 2. andax = 4.
Because 2a) —ap = 2-2 — 1 = 3 # g1, we see that {a,}, where a, = 2", is not a solution of
the recurrence relation.

Suppose that a, = 5 for every nonnegative integer n. Then for n = 2, we see that a, =
2ey_1 —ay_1=2-5 = 5 = a,,. Therefore, [a,}, where a, = 5,15 a Hi]'l.l[lﬂl‘l of the recur-

rence relation. . |




Modeling with recurrence relations

We can use recurrence relations to model a wide variety of problems,

such as:

(a) finding compound interest
(b) counting rabbits on an island

(c) determining the number of moves in the tower of Hanoi Puzzle
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Modeling with recurrence relations

Finding compound interest

Example:

Someone deposits $10,000 in a savings account at a bank yielding 5%
per year with interest compounded annually. How much money will be in
the account after 30 years?

Solution:
Let Pn denote the amount in the account after n years. Because the
amount in the account after n year equals the amount in the account

after n-1years plus interest for nth year.

How can we determine Pn on the basis of Pn-1?
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Modeling with recurrence relations

o We can derive the following recurrence relation:
P,=P,,+0.05P ,=1.05P_ ;.
The initial condition is P, = 10,000.

Then we have:

P =1.05P, , = (1.05)"P,

o We now have a formula to calculate P for any natural number n and can
avoid the iteration.

o Let us use this formula to find P,, under the initial condition P, = 10,000:

=(1.05)39.10,000 = 43,219.42

After 30 years, the account contains $43,219.42. 214



Modeling with recurrence relations

Counting rabbits on an island

o Let's look first at the Rabbit Puzzle that Fibonacci wrote about and then at
two adaptations of it to make it more realistic. This introduces you to the
Fibonacci Number series and the simple definition of the whole never-ending
series.

o The original problem that Fibonacci investigated (in the year 1202) was about
how fast rabbits could breed in ideal circumstances.

o Suppose a newly-born pair of rabbits, one male, one female, are put in a field.
Rabbits are able to mate at the age of one month so that at the end of its
second month a female can produce another pair of rabbits. Suppose that our
rabbits never die and that the female always produces one new pair (one
male, one female) every month from the second month on. The puzzle that
Fibonacci posed was...

rlow many pairs will there be in one yzar?
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Modeling with recurrence relations

Nurnber

Month Reproducing pairs | Young pairs | Total pairs ' of pairs
1
1 0 1 1
1

s B el @8 :
o 88 @888
B L EA S 33 e %888

At the end of the first month, they mate, but there is still one only 1 pair.
At the end of the second month the female produces a new pair, so now there are 2 pairs of rabbits in the
field.
= At the end of the third month, the original female produces a second pair, making 3 pairs in all in the field.
= At the end of the fourth month, the original female has produced yet another new pair, the female born
two months ago produces her first pair also, making 5 pairs.
Consequently, the sequence {an} satisfies the recurrence relation f, =f, ; +f,_», forn> 3 with initial 216
conditions f, =1 and f, =1




Modeling with recurrence relations

Let {an} the number of pairs of rabbits after n months.

At the end of the first month, the number of pairs of rabbits on the island is

Since this pair does not breed during the second month,

To find the number of pairs after n months, add the number on the island the
previous month, fn-1, and the number of newborn pairs, which equals fn-2, since
each newborn pair comes from a pair at least 2 months old.




Modeling with recurrence relations

Determining the number of moves in the tower of Hanoi Puzzle.

The Tower of Hanoi (also called the Tower of Brahma or Lucas’
Tower, and sometimes pluralized) is a mathematical game or puzzle. It
consists of three rods, and a number of disks of different sizes which
can slide onto any rod. The puzzle starts with the disks in a neat stack
in ascending order of size on one rod, the smallest at the top, thus
making a conical shape.
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Modeling with recurrence relations

o The objective of the puzzle is to move the entire stack to
another rod, obeying the following simple rules:

2) Each move consists of taking the upper disk from one of the stacks and
placing it on top of another stack i.e. a disk can only be moved if it is the
uppermost disk on a stack.




Modeling with recurrence relations

How many moves will it take to transfer n disks from the left post to
the right post?

Let's look for a pattern in the number of steps it takes to move just one,
two, or three disks. We'll number the disks starting with disk 1 on the
bottom.

1 disk: 1 move

Move 1. move disk 1 to post C

1 DISK
‘ ‘ ‘ {1) ‘ ‘ ‘
A B C A B C
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Modeling with recurrence relations

2 disks: 3 moves

Move 1. move disk 2 o post B
Move 2: move disk 1 to post C
Move 3: move disk 2 to post C

2 DISKS

I

A

(1) ‘ ‘
A B

l._.l_ n_

{2) ‘ ‘ ‘ (3) ‘ ‘ ‘

A B C A B C
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Modeling with recurrence relations

3 disks: 7 moves

Move 1: move disk 3 to post C
Move 2: move disk 2 to post B
Move 3: move disk 3 to post B
Move 4: move disk 1 to post C
Move 5: move disk 3 to post A
Move 6: move disk 2 to post C
Move 7: move disk 3 to post C

3 DISKS
‘ (1) ‘ ‘ ‘
A B C A B C
{2} ‘ {3) ‘ ‘ {4} ‘ ‘
A B C A B C A B C
(5) ‘ ‘ ‘ (6) ‘ ‘ (7} | ‘
A B C A B C A B C
Can you work through the moves for transferring 4 disks? It should take you 15 222

moves. How about 5 disks? 6 disks? Do you see a pattern?



Modeling with recurrence relations




Can you work through the moves for transferring 4 disks? It
should take you 15 moves. How about 5 disks? 6 disks? Do you
see a pattern?
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Modeling with recurrence relations

A. Recursive pattern

« From the moves necessary to transfer one, two, and three disks, we can find a recursive
pattern - a pattern that uses information from one step fo find the next step - for moving
n disks from post A fo post C:

1.First, transfer n-1 disks from post A to post B. The number of moves will be the same
as those needed to transfer n-1 disks from post A to post C. Call this number M moves.
[As you can see above, with three disks it takes 3 moves fo ftransfer two disks (n-1)
from post A to post C.]

2.Next, transfer disk 1 to post C [1 move].

3.Finally, transfer the remaining n-1 disks from post B fo post C. [Again, the number of
moves will be the same as those needed to transfer n-1 disks from post A to post C, or
M moves.]

 Therefore the number of moves needed to transfer n disks from post A fo post C is
2M+1, where M is the number of moves needed to transfer n-1 disks from post A to post C.
Unfortunately, if we want to know how many moves it will take to transfer 100 disks from
post A to post B, we will first have to find the moves it takes to transfer 99 disks, 98
disks, and so on. Therefore the recursive pattern will not be much help in finding the time
it would take to transfer all the disks.

« However, the recursive pattern can help us generate more numbers to find an explicit (non-
recursive) pattern. Here's how to find the number of moves needed to transfer larger
numbers of disks from post A to post C, remembering that M = the number of moves
needed to transfer n-1 disks from post A to post C:

1.for 1disk it takes 1 move to transfer 1 disk from post A to post C;

2.for 2 disks, it will take 3 moves: 2M+1=2(1) +1= 3

3.for 3 disks, it will take 7 moves: 2M+1=2(3) +1= 7 225
4 for 4 disks, it will take 15 moves: 2M +1=2(7) +1=15

5.for 5 disks, it will take 31 moves: 2M +1=2(15)+1= 31

6.for 6 disks... ?



Modeling with recurrence relations

B. Explicit Pattern

Number of Disks Number of Moves
1 1
2 3
3 7
4 15
5 31

Powers of two help reveal the pattern:

Number of Disks (n) Number of Moves

1 271-1=2-1=1
2 272-1=4-1=3
3 2°3-1=8-1=7
4 274-1=16-1=15
5 2°5-1=32-1=31

So the formula for finding the number of steps it takes to fransfer n
disks from post A to post Bis: 2°n - 1. 226



Modeling with recurrence relations

Example: Let {Hn} denote the number of moves needed to solve the Tower of
Hanoi problem with n disks. Set up a recurrence relation for the sequence {Hn}.

Solution:

o The initial condition is Hi= 1, since one disk can be transferred from A to C,
according to the rules of the puzzle, in one move.

o We can use an iterative approach to solve this recurrence relation. Note that

H =2H ,+1
=202H, ,+1)+1=2’H , +2+1
=2°QH, ,+1)+2+1=2"H ,+2*+2+1

_on 1 227

o For n>4 seethe link for more details (https://www.mathsisfun.com/games/towerofhanoi.html)



Exercises

Find these terms of the sequence {a,}, where a, =
2-(=3)" + 5.
ﬂ} Ty h} i 'E} il4 'l:“ s

What are the terms ap, ay, a2, and as of the sequence |a, |,
where a, equals

a) 27+ 17 hy (n+ 1t

List the first 10 terms of each of these sequences.

a) the sequence that begins with 2 and in which each
successive term 1s 3 more than the preceding term

b) the sequence that lists each positive integer three
times, in increasing order

€) the sequence that lists the odd positive integers in in-
creasing order, hsting each odd mteger twice




Exercises

[s the sequence {a, ] a solution of the recurrence relation
ﬂr]' - ﬂﬂn—l - lﬁ'ﬂn—l if

a) a, =07 b) a, =17
€) dy =2"7 d) a, = 4"

Show that the sequence {a, | 15 a solution of the recurrence
relation a, = ay_1 + 2ey_ 2 + 20 — 9if
a) a, = —n+ 2




Lecture(15)
Chapter(4)

Recurrence Relations

O Solve Recurrence Relations

- Solving linear combination of the previous k terms.

- SOlViIlg linear homogenous recurrence relations Wlth

constant coefficients.

230



Solving Recurrence Relations

O In general, we would prefer to have an exp]icit formula to compute the value

of an rather than conducting n iterations.

O For one class of recurrence relations, we can obtain such formulas in a

systematic way.

O Those are the recurrence relations that express the terms of a sequence as

linear combinations of previous terms.

231



Solving Recurrence Relations

How to Solve Recurrence Relations
- Solving linear combination of the previous k terms.

FrreCreCreCErECrCECEreCCCeCreECEreCECEreECCeCTTeCeCEcoC recoerecccc

1,4, 13, 46, 157, ...

o0 — 1; a =49
an —_— 28n-1 - 5an-2

1. a, = 2an-1 + 5an-2
2. an= (an-l)2 + 3an-

o Focus on the equations above. The first one is an example of linear recurrence
relation. The second example is not linear, so what is mean to be linear?

3. f(x) =3x-1 121

o What made the function in the equation 3 linear with that the exponent was 1



Solving Recurrence Relations

- Solving linear homogenous recurrence relations with
constant coefficients

o Homogenous describes things that are all of the similar kind. If you have ahomogenous group of
friends, you probably wear the same outfits, talk the same way, live in the same kind of

neighborhood, and like the same music. Thus y"= xy is homogeneous; y" = xy + x +1 is not,
since x+1 doesn't "involve" y.

1. an=an1+ 3n

2. an=10 an1

o The first example is not homogenous. The second example is homogenous, so what it mean for
a recurrence relation to be homogenous?
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Solving Recurrence Relations

Definition: Alinear homogeneous recurrence relation of degree k
with constant coefficients is a recurrence relation of the form:

Where c,, c,, ..., ¢, are real numbers, and ¢, not equal 0

A sequence satisfying such a recurrence relation is uniquely determined by
the recurrence relation and the k initial conditions

ao = co’ a1 = Cl’ az = Cz’ (LY ak_l = Ck_lu

122



Solving Recurrence Relations

Examples:

o The recurrence relation Pn = (1.05)Pn-1
is a linear homogeneous recurrence relation of degree one

o The recurrence relation fn = fn-1 + fn-2
is a linear homogeneous recurrence relation of degree two

o The recurrence relation an = an-s
is a linear homogeneous recurrence relation of degree five




Solving Recurrence Relations

Examples

Determine if the following recurrence relations are linear
homogeneous recurrence relations with constant coefficients.

O Pn= (1.11)Pn—1

a linear homogeneous recurrence relation of degree one
O an=an1 +Clzn—2

not linear
O fn=fn1+ fn

a linear homogeneous recurrence relation of degree two
O Hn=2Hn1+1

not homogeneous
O an=ans

a linear homogeneous recurrence relation of degree six
1 Bn=nBn1

does not have constant coefficient

234



Solving Recurrence Relations

o Basically, when solving such recurrence relations, we try to
find solutions of the form a_, = r®, where r is a constant.

a, = r" is a solution of the recurrence relation
a,=cqa,;tca, ,+...+ca, . if and only if
r® = ¢l + cor 2+ L.+ gtk = (),

o Divide equation @ by r>k and subtract the right-hand side
from the left: —->

k k-1 _ o pk-2 — 2).
rk - crl-cr?- ... -¢c r-¢, =0 @

o Equation @ is called the characteristic equation of the
recurrence relation.

o The solutions of this equation (2) are called the characteristic234
roots of the recurrence relation.



Solving linear homogenous recurrence relations
with constant coefficients

Let us consider linear homogeneous recurrence relations of degree two.

Theorem 1:

Let c: and c2 be real numbers. Suppose 7> —c,r —c, =0 has two
distinct roots r: and r.. Then the sequence {an} is a solution of the
recurrence relation an = Cian1 + C2an= if and only if

a, =a,r," +a,r, forn=0,1, 2, ..where «,and «r,are constants

n
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Solving linear homogenous recurrence relations
with constant coefficients

Example:
What is the solution of the recurrence relationa,=a,_, +2a,, witha,=2anda, =77
Solution: The characteristic equation of the recurrence relation is r2 —r — 2 = 0.
Its roots are r =2 and r = -1.
Hence, the sequence {a,} is a solution to the recurrence relation if and only if:
a, = o, 2" + o, (—1)" for some constants <, and .
Given the equation a,, = &, 2" + &, (—1)” and the initial conditions a, = 2
and a; = 7, it follows that

A, =2 =0+, => (1)

a, =7=c,.2+ca,.(—1) =» (2)
Solving these two equations ((1) and (2)) gives us
o, =3 and o,=-1.

Therefore, the solution to the recurrence relation and 1nitial conditions is the
sequence {a,} with

a =32"—(-1)" 236



Solving linear homogenous recurrence relations
with constant coefficients

Example:
Give an explicit formula for the Fibonacci numbers.

Solution: The Fibonacci numbers satisfy the recurrence relation

f =1f ,+1f , with initial conditions f, = 0 and f; = 1.
The characteristic equationisr?—r—1=0.

Its roots are

1++/5 1-4/5

}"1: ) }"2:—
Remark: 2 2
s ax? + bx +¢c =0

The solution(s) to a quadratic equation can be calculated using the Quadratic Formula:

-b % Jb’~4ac 237

24

X =




Solving linear homogenous recurrence relations
with constant coefficients

Therefore, the Fibonacci numbers are given by

/1+\/5j” (1-#5}”
I, =q, +a,| ——
L 2 2

for some constants and

We can determine values for these constants so that

the sequence meets the conditions fo=0 and f1 = 1:
f0:a1-|—a2209 (1)




Solving linear homogenous recurrence relations
with constant coefficients

The unique solution to this system of two equations and
two variables is

So finally we obtained an explicit formula for the
Fibonacci numbers:

J5

2 2

1 1+\ET_ 1 [1—\@]"




Solving linear homogenous recurrence relations
with constant coefficients

But what happens if the characteristic equation has
only one root?

o How can we then match our equation with the initial conditions ac and a1 ?

Theorem 2:

Let c: and c: be real numbers with c2#0. Suppose 7> —c¢,;r—c, =0
has only one root ro. A sequence {an} is a solution of the recurrence
relation an= ciani+ G2anz ifand only if a, = a1y’ + o, nry
forn=20, 1, 2, ..where «,and «, are constants
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Solving linear homogenous recurrence relations

with constant coefficients

Example:

What is the solution of the recurrence relation a, = 6a, ., —9a,,

with a, =1 and a; = 6?
Solution:

The only root of r2-6r+9=01sr,= 3.
Hence, the solution to the recurrence relation 1s

a, = o, 3" +a,n3" for some constants @, and @, .
To match the initial condition, we need

a, = 1=,

a =6 =«,.3 +o,.3

Solving these equations yields & =1 and &, = 1.
Consequently, the overall solution is given by

a =3"+n3".

n

241



Solving linear homogenous recurrence relations
with constant coefficients

The follows theorem state the general result about the solution of linear
homogenous recurrence relations with constant coefficients, where the
degree may be greater than two, under the assumption that the

characteristic equation has distinct roots.

Theorem 3:




Solving linear homogenous recurrence relations

with constant coefficients

Example:
Find the solution to the recurrence relation an= 6an-1-11an2+6an-3

with the initial conditions ao= 2, a1= 5, and az= 15.

Solution:

g

243




Solving linear homogenous recurrence relations
with constant coefficients

Factor: f(x)=x" —6x"+11x-6
There 1s the Rational Roots Theorem.

If a polynomial has a rational root, then it is of the form n/d where n is a factor of the constant
term and d is a factor of the leading coefficient.

The constant term is 6 with factors: =1,+2,+3,+6

The leading coefficient is 1 with factors: =1

Hence, the possible roots are (as Galactus pointed out) are: =1,+2,+3,+6
Then there is the Factor Theorem.

If f(a)=0, then (x—a) i1s a factor of f(x).

Get 1t?

Plug in a number for x ... If it comes out to zero, we've found a factor.

Try x=1:£(1)=13-6-12+11-1-6=0. . . Bingo!

So, we know that (x—1) 1s a factor.

Use long (or synthetic) division to get: x3—6x2+11x—6=(x—1)(x2—5x+6)

Then we can factor the quadratic factor: (x—1)(x—2)(x—3) 244



Solving linear homogenous recurrence relations
with constant coefficients

o The follows theorem state the most general result about linear
homogenous recurrence relations with constant coefficients,
allowing the characteristic equation to have multiple roots.

o The key point is that for each root r of the characteristic equation,
the general solution has a summand of the form P(n)r" where P(n) is
a polynomial of degree m-1, with m the multiplicity of this root.
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Solving linear homogenous recurrence relations
with constant coefficients

Theorem 4:

Let ci,¢C2,..., ckbe real numbers. Suppose that the characteristic
Equation »* —c,r*"' —...— ¢, = 0 has t distinct roots ri, r,..., It
With multiplicities mi,m,..., m, respectively, so that mi> 1 for
I=1,2,..,tand mi+ m2+...+4 m: = k. Then the sequence {an} is a solution
of the recurrence relation

dn = Ciadn1+ C2an2 +...+ Ckadnk
if and only if

a, =(a, ,+o, n+..+ al’ml_lnml_l)rl”

m,—1 n
+Ha,ota, n+...+a,, 0o

forn=20, 1, 2,... where Q, are constantsfor1 <i<tand0<j <mi-1.
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Solving linear homogenous recurrence relations
with constant coefficients

Example:

Suppose that the roots of the characteristic equation of a linear
homogeneous recurrence relation are 2,2,2,5,5, and 9 (that is, there
are three roots, the root 2 with multiplicity three, the root 5 with

multiplicity two, and the root 9 with multiplicity one). What is the
form of the general solution?

Solution:

By Theorem 4, the general form of the solution is

(a,o+o n+ a, ,n*)2" + (ayo+ 0, n)5" + ety 9"

247



Find the solution to the recurrence relation an= -3an-1- 3an2- an-3s with
mitial conditions ao=1, a1 = -2, and az= -1.




Lecture(16)
Chapter(4)

Recurrence Relations

O Solve Recurrence Relations

- Generating Functions.

- The algebra of generating function.

- Useful facts about power series.




Generating Functions

o Basically, generating functions are a tool to solve a wide variety of

counting problems and recurrence relations, find moments of
probability distributions and much more.

o The idea is to associate with any sequence {an} a function defined
as follows:

The generating function for the sequence ao, a, ..., ax, ... of real
numbers is the infinite series

G(x)=a,+ax+..+ax +..= Zakxk
k=0

Generating Functions represents sequence where each term of a sequence is
expressed as a coefficient of a variable x in a formal power series. 250



Generating Functions

Examples: What are the generating functions for the sequences {ax}:

1. G)Gk=2 b)ak:3k C)Gk:k+1 d)ak:2k

Solutions:
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Generating Functions

Solutions:

When ak = 2, generating function,
_ ® k _ 2 3
G(x)=) 2x"=242x+2x"+2x" +...
When ak = 3k, generating function,
_ 0 k _ 2 3
G(x)=) 3kx* =0+3x+6x"+9x +...
When ak = k+1, generating function,
G(x)=)  (k+Dx* =1+2x+3x" +4x +...
k=0
When a, =2*, generating function,

G(x) = Z::o 26X =14 2x+4x" +8x° +... 253



Generating Functions

Example:

Find the generating function for the sequence given recursively by:

(@ a4, =2a, ,+4a, , with a,=1 and a, =3

b)a,=a, ,+2a, ,+3 witha, =2 and a, =2

Solution:
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Generating Functions

Solutions:
(a) 1, 3, 10, 32, ...

The generating function for this sequence 1S

1+3x+10x% +32x> +...

(b) 2, 2,9, 16, 37, ...

The generating function for this sequence is

242x+9x% +16x° +37x* +...

254



Generating Functions

Example:

Let m be a positive integer. Let ax = C(m,k), for k =0,1,2,..., m.
What is the generating function for the sequence ao, ai,...,am?

Solution:
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Generating Functions

Solution:

The generating function for this sequence is

G(x) =C(m,0)+C(m)x+C(m,2)x* +...+ C(m,m)x".

256



Generating Functions

Examples:

Find the generating functions for the following sequences. In each case, try to

simplify the answer.

(a)1,1,1,1,1,1,0,0,0,0,.. (b)1,1,1,1,1,...(c)1,3,3,0,0,0,0, ...

2015 2015 2015 2015
(d) C2%,C25 25, . C2%50,0,0,0.,..

Solutions:
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Generating Functions

Solutions:

(a) The generating function is

G(x)=1+1x+1x" +1x +Ix* +1x° + 0x° + Ox” +...

=l+x+x"+xX +x +x

(b) The generating function is
GxX)=l+x+x"+x" +x" +...

(c) The generating function is
G(x)=1+3x+3x"

(d) The generating function is

G(x) — CO2015 4+ C12015 4+ C2015

+...+C

2015
2014

4

2014 2015 _ 2015
=+ CZOIS
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Algebra on G(x)

Manipulating formal power series:

O let ay,a,,a,,... be asequence of real numbers. We call the (possibly infinite) sum
a, +a,x+a,x’ +..a,x" +... a formal power series.
O The sum is said to be formal because we cannot collapse any of the terms. So, if
a,+a,x+a,x> =b, +bx+b,x’, then it must be that a, =b,, a, =b, and a, =b,.
O There is a single power series equal to1: 1 =1+0x+0x" +...,

O There is a single power series equal to 0: 0 =0+ 0x+0x” +...,
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Algebra on G(x)

Sum and product

O A formal power series is a mathematical object which behaves essentially like
an infinite polynomial.
O If we have two generating functions F(x) and G(x), we define the sum

and product as follows theorem:

F(x)= Zakxk G(x)= Zbkxk
k=0 =0

F(0)+G(x) =2 (a,+b,) Match all terms with

k=0
Zk:a ., ] N > equal powers in x.
-

FOG( =Y.

Jj=0




Algebra on G(x)

Example:
If Ff(x) =14+x+x>+x> +...
g(x) =1+x>+x%+x7 +...
Find (a) (f(x)+g(x))
b) f(xgx)
Solution:

ayb, +(a,b, + a\by)x + (ab, + a,b, + a,b, )X+




Algebra on G(x)

Solution:

fX)=1l+x+x"+x +...

g(x)=1+0x+0x" +x" +0x* +0x° +x° +...

Now fF(x)+g(x)=2+x+x>+2x"+...

and f(X)g(x)=1+x+x>+2x +...
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Algebra on G(x)

O

The generating functions can be added and multiplied just like polynomials.
Generating functions obey the same algebraic laws as polynomials.

Examples are the associative and commutative laws of addition and

multiplication and the distributive law.
The generating function

0=0+0x+0x>+0x>+...
takes the role of additive identity; that is,

0+G=G+0=G for every generating function G.
Likewise, the generating function
1=1+0x+0x"+0x" +...
is the multiplicative identity, so that

1.G=G.1=G for every generating function G.
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Algebra on G(x)

Such inverse often exists; for example,

(l—x)(l—l—x+x2—l—x3—|—...)=
l+x+x"+x" +...—x—x"—x> —...=1
Thus

A+x+x"+x" +..) '=1—x
and

A—x) '=14+x+x"+x> +...
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Algebra on G(x)

Inverse of generating function A(x)_1

a,b, + (ab, + a\by)x+(a,b, + a,b, + azbo)xz +...

The multiplicative inverse of a generating function A(x) is the formal power series

B(x) = ano b x"  that satisfies

A(x) . B(x)=1.
Thus,

Z Zakbn_k X' =1+0x+0x" +...

n>0 k>n

Recall that two formal power series are equal if and only if all of their coefficients are

the same. This leads to the system of equations:

ayb, =

I (1)
ab, +ab, =0 (2)
0

(3)

a,b, +ab, +a,b, =



Algebra on G(x) by + (ayb, + aby )X+ (agh, + ab, + aby)x* +...

Example:

Find the inverse of the generating function l+x+x>+x +...

Solution:

C,
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Algebra on G(x)

Solution:

Let G(x)=1+x+x2+x3+...

G(x)"' =a,+a,x+a,x* +a,x’ +...

ayby + (ayb, + a\by)x + (a,b, + a,b, + azbo)xz +...

G.G™ ' =1 thatis (I+x+ X+ x4+ ) (a,+ax+a,x” +ax> +..)=1
Free term: a,=1

Coefficient of x a, l+a,.1=0=a,=-1

Coefficient of x> a,.1+a,.1+a,.1=0=a,=0

Coefficient of x> =x" =x> =0

G(x)'=1-x

hence




Algebra on G(x)

Example:

Find the inverse of the generating function 1— x

Solution:
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Algebra on G(X) ay,b, + (ayb, + a,b,)x + (a,b, +ab, +a,b))x* +...

Example:

Find the inverse of the generating function 1+ 2x + 3x% +4x> +...

Solution:
Let G(x)=1+2x+3x?+4x>+...

G '(x)=a,+a,x+a,x* +a x> +...
G.G ' =1 thatis (1+2x+3x> +4x> +..) (a,+a,x+a,x> +a,x> +..)=1
Free term: “o=1
Coefficient of x: ¢, ,.2+a,.1=0=a,=—2
Coefficient of x* a,.3+a,.2+a,.1=0=a,=1

4

Coefficient of x> = x* = x> =0 hence

G'(x)=1-2x+x"




Useful facts about power series

O To use generating functions to solve many important counting probiems, we
will need to apply the binomial theorem for exponents that are not positive

integers.

O Before we state an extended version of the binomial theorem, we need to

define extended binomial coefficients.

Y24
O [ kj is often read as “u choose k”, because there are ways to choose k

elements from a set of u elements.

Definition:

Let u be a real number and k a nonnegative integer. Then the

extended binomial coefficient [ZJ is defined by

u :u(u—l)(u—2)...(u—k+1) if WeR, keZ+

k k! ’

) 270
, =1 if k=0




Useful facts about power series

Example: Find the values of the extended binomial coefficients @] and (lﬁ

Solution:

Taking u = 3 and k = 2 in Definition gives us

3)_36-D _,
2 3!

Similarly, taking u=1/2and k=3
[1/2) _1/2)a/2-1n(1/2-2)

3 3!

_(1/2)(-1/2)(-3/2)
6

1

16
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Useful facts about power series

O The following exampie provides a useful formula for extended binomial
coefficients when the top parameter is a negative integer. It will be useful in

our subsequent discussions.

Example: When the top parameter is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary binomial coefficient. To

see that this is the case, note that

(_nj:(—l)r {n+r—1):(_1)r Cn+r—-1Lr) nyreZ+

r r

notation: () notation is for extended BC, while C () is only for ordinary BC!
272



Useful facts about power series

~2) (-6 17
Example: Find the values of the extended binomial coefficients ( 3 J, (10} and ( 9 j

Solution:

B N =
[Ig j B (6 +1100_1j 1) =+ G(S)j
(—917) {17;9—1} (1) = @sj
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Useful facts about power series

Th eorem. The extended binomial theorem

Let x be a real number with |X| < 1 and let u be a real number. Then

1+ x)* = i[gjxk

k=0

Example: Find the generating function for (1+x)™" and (1-x)™"
where n is a positive integer, using the extended binomial theorem.

Solution: By the extended Binomial Theorem, it follows that (1+ x) "= Z(;n )Xk
. k=0
Using the previous example a simpie formula for ( k j, we obtain

(1+x)™" = i(—l)kC(er ~1,k)x".

Replacing x by —x, we find that O_O 274
(1-x)"=) Cn+k-1k)x".
k=0



Find the generating function for the following, using the extended binomial theorem.

1. (1+x)"
2. 1-x)"
3. (1+2x)"
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Lecture(17)
Chapter(5)

Counting

O Basic counting principles.
O Factorial notation.

O Binomial Coefficients and Pascal’s Triangle.
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One, two, three, we’re...

o We must count objects to solve many different types of problems. For
instance, counting is used to determine the complexity of algorithms.

o Counting is also required to determine whether there are enough telephone
numbers or Internet protocol addresses to meet demand.

o Furthermore, counting technique are used extensively when probabilities of
events are computed.
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Basic Counting Principles

Counting problems are of the following kind:
“How many different 8-letter passwords are there?”

“How many possible ways are there to pick 11 soccer
players out of a 20-player team?”

Most importantly, counting is the basis for computing
probabilities of discrete events.

(“What 1s the probability of winning the lottery?”)
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Basic Counting Principles

The sum rule:

If a task can be done in 7, ways and a second task in 7,
ways, and 1if these two tasks cannot be done at the same
time, then there are n,+n, ways to do either task.

Example:
1- The department will award a free computer to either a CS

student or a CS professor. How many different choices are there,
1f there are 530 students and 15 professors?

There are 530 + 15 = 545 choices.
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Basic Counting Principles

Generalized sum rule:

o If we have tasks 71, , T,, ..., T, that can be done in ni, ne, ..., Nm
ways, respectively, and no two of these tasks can be done at the
same time, then there are n: + nz+ ... + nmn ways to do one of these
tasks.
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Basic Counting Principles

Examples:

2- Suppose E is the event of choosing a prime number less than 10, and F is
the event of choosing an even number less than 10. Then E can occur in four
ways {2, 3, 5, 7}, and F can occur in 4 ways {2, 4, 6, 8}. However E or F can
not occur in 4 +4 = 8 ways since 2 1s both a prime number less than 10 and
even less than 10. In fact, E or F can occur in only 4 + 4 — 1 = 7 ways.

3- Suppose E is the event of choosing a prime number between 10 and 20, and suppose
F is the event of choosing an even number between 10 and 20. Then E can occur in 4
ways {11, 13, 17, 19}, and F can occur in 4 ways {12, 14, 16, 18}. Then E or F can occur in
4 + 4 = 8 ways since now none of the even numbers is prime.

4- Suppose that either a member of the mathematics faculty or a student who is
mathematics major is chosen as a representative to a university committee. How many
different choices are there for this representative if there are 37 members of the
mathematics faculty and 83 mathematics majors?

Solution: From the sum rule there are 37+ 83 = 120 possible ways to pick this
representative.

5- A student can choose a computer project from one of three lists. The three lists

contain 23, 15, and 19 possible projects, respectively. How many possible projects are

there to choose from?

Solution: The student can choose a project from the first list in 23 ways, from the

second list in 15 ways, and from the third list in 19 ways. Hence, there are 23+15+19=57 281
projects to choose from.



Basic Counting Principles

The product rule:

Suppose that a procedure can be broken down into two
successive tasks. If there are n1 ways to do the first task
and n: ways to do the second task after the first task has
been done, then there are nin: ways to do the procedure.

Example:

1- How many different license plates are there that
containing exactly three English letters ?

There are 26 possibilities to pick the first letter, then 26
possibilities for the second one, and 26 for the last one.
So there are 26.26.26 = 17576 different license plates.
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Basic Counting Principles

Generalized product rule:

If we have a procedure consisting of sequential tasks
Ty, T, ..., Tw that can be done 1n ni, ne, ..., nm ways,
respectively, then there are ni.n: ... .nn ways to carry
out the procedure.
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Basic Counting Principles

Examples:

2- Suppose license plate contains two letters followed by three digits with the
first digit not zero. How many different license plates can be printed?
Solution: Each letter can be printed in 26 different ways, the first digit in 9
ways and each of the other two digits in 10 ways. Hence
26.26.9.10.10=608400 different plates can be printed.

3- In how many ways can an organization containing 26 members elect a
president, treasurer, and secretary (assuming no person is elected to more
than one position)?

Solution: The president can be elected in 26 different ways; following this, the
treasurer can be elected 1n 25 different ways, and, following this, the
secretary can be elected in 24 different ways. Thus, by the above principle of
counting, there are 26.25.24=15600 different ways.

numeral

e ey
« A digit is a single symbol used to make numeral. 1 5 3

- 0,1,2,3,4,5,6, 7,8 and 9 are the ten digits we use in everyday numerals. / % \
digit digit digit
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Sum and product rule principle

The sum and product rules can also be phrased in terms of set theory.

Sum rule: Let A1, Az, ..., Am be disjoint sets. Then the number of ways to
choose any element from one of these sets is

A, UA, U.LUA, | =|A|+]|A ]+ +|A, |

Product rule: Let As, A2, ..., Am be finite sets. Then the number of ways
to choose one element from each set in the order As, Az, ..., Am is

‘Ale2 x...Am‘ = ‘Al‘X‘A2‘X...X‘AM ‘
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Factorial notation

The factorial of nonnegative integer n denoted by n!, is the
product of all positive integer less than or equal to n.

3 X 2 X 1 = 06

Written using factorial notation

|

| 3 Pronounced as
Which means » “three factorial’

\ / 286




Factorial notation

o The product of positive integers from 1 to n
inclusive 1s denoted by n! (read “n factorial”):

| In general n! = n(n-1)(n-2)(n-3) . . . (3)(2)(1) |
o In other words, n! is defined by

i {n.(n—l)! if n>?2
| f n=0orl
Illustration:
21=2.1=2,
3!=3.2.1=6
41=4.3.2.1=24

51=5.41=5.24=120
6!=6.5!=6.120=720 287



Factorial notation

a) Simplify n! _n(n-l)(n=2]7

(n—2)! (27!
b) Simplify 8 _ 8xTxe
6! 6

c) Express 10x9x 8 x7 as a factorial.

10!

= 288
o!



Binomial Coefficients

o The symbol C,lj (read “nCr”), where r and n
are positive integers with r <n, is defined as

n) nn-Hn-2).... (n—r—+1)
r) r(r—1........ 3.2.1

n,) n!
—r _r!(n—r)!

o We have the following important relation :

(F)=(.2)
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Binomial Coefficients

IMlustration(1):
8 9
_87 g _987.6 _
2) 2.1 4) 432.1
12 10
_ 12111098 o _1098 _ o
5 5.43.2.1 3 3.2.1
IMlustration(2):

10
_ 10.9.8.7.6.5.4 _ 120
7 7.6.5.4.3.2.1

o On the other hand, 10 - 7= 3 and so we can also compute as follows:

10 10
_ _ 10.8.9 _ 120
7 3 3.2.1
o Observe that the second method saves space and time
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Useful facts about power series

O The numbers (:j are called the binomial coefficients since they appear as the

n

coefficients in the expansion of (a + b)

Theorem:




Binomial Coefficients and Pascal’s Triangle

Examples:

(a) (x+2)* =

QG )

x*+8x° +24x* +32x+16.

(b) (x+3) =

(oGl Ger ()

290
x> +15x* +90x° +270x* +405x + 243,



Binomial Coefficients and Pascal’s Triangle

©)

The coefficients of the successive powers of a + b can be
arranged in a triangular array of numbers, called Pascal's
triangle, as pictured in next slide. The numbers in Pascal's
triangle have the following properties:

1. The first number and the last number in each row is 1.

2. Every other number in the array can be obtained by
adding the two numbers appearing directly above it.
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Binomial Coefficients and Pascal’s Triangle

1 ROW O
1 1 ROW 1
1 2 1 ROW 2
1 3 3 1 ROW 3
1 4 6 4 1 ROW 4
1 5 10 10 5 1 ROW 5
1 6 15 20 15 6 1 ROW 6
1 7 21 3 3 21 7 1 ROW 7
1 8 28 56 70 56 28 8 1 ROW 8
1 9 36 84 126 126 84 36 9 1 ROW 9

Yeah! Its finished.




Binomial Coefficients and Pascal’s Triangle

Pascal’s triangle

(a+b)’ =1
(a+b) =a+b
(a+b)> =a’+2a b+b’
(a+b)’ =a’ +3a’b+3a b° +b’
(a+b)* =a*+4a’b+6a’b”> +4a b’ +b*
(a+b)’ =a’ +5a*b+10a’b”* +10a’b’ +5a b* + b’
(a+b)° =a’ +6a’b+15a*b> +20a’b’ +15a°b* +6ab> +b°
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Lecture(18)
Chapter(5)

Counting

O Permutations.

O Combinations.




Permutations

o A Permutation is an arrangement of objects (n) in a particular order.

o Inother words, a permutation is an arrangement of objects, without

Notice, ORDER MATTERSI

repetition, and order being important.

o The number of permutations of n items taken r at a time is denoted by

P(n, r).

Example 1: List all permutations of the letters ABCD

ABCD
ABDC
ACBD
ACDB
ADBC
ADCB

BACD
BADC
BCAD
BCDA
BDAC
BDCA

CABD
CADB
CBAD
CBDA
CDAB
CDBA

DABC
DACB
DBAC
DBCA
DCAB
DCBA
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Permutations

Example 2: List all three letter permutations of the letters in the word HAND

HAN AHN NHD DHA
HNA ANH NDH DAH
HAD AHD NAH DAN
HDA ADH NHA DNA
HND AND NAD DHN
HDN ADN NDA DNH

Now, if you didn't actually need a listing of all the permutations, you could use
the formula for the number of permutations in the next slide.
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Permutations

o To find the number of Permutations of n items chosen r at a
time, you can use the formula

_n(n=)(n-2).. n—r+1).(n—r)! _ n!
N (n—r)! - (n—n)!

P(n,r)

o The n value is the total number of objects to chose from. The
r is the number of objects your actually using.

o In the special case in which r = n, we have P(n, n) = nl

Corollary: There are nl permutations of n objects
(taken all at time).
For example, there are 3! = 6 permutations of the
three letters a, b, and c. That is

where O< r<n .
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Permutations

The number of ways to arrange
the letters ABC:

Number of choices for first blank> 3
Number of choices for second blank? 3
Number of choices for third blank? 3

2 __

2 1
3*2*1 =6 31 = 3*¥2*1 =6

ABC ACB BAC BCA CAB CBA
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Permutations

Practice :

A combination lock will open when the right choice of
three numbers (from 1 to 30, inclusive) is selected. How
many different lock combinations are possible assuming
no number is repeated?

Answer Now
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Permutations

Practice:

A combination lock will open when the right choice of
three numbers (from 1 to 30, inclusive) is selected. How
many different lock combinations are possible assuming
ho number is repeated?

' v
S0t _ 30! =30%*29%*28 =24360
(30-3)! 27!

30 P3 =
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Permutations

Practice:

From a club of 24 members, a President, Vice President,
Secretary, Treasurer and Historian are to be elected.
In how many ways can the offices be filled?

Answer Now
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Permutations

Practice:

From a club of 24 members, a President, Vice President,

Secretary, Treasurer and Historian are to be elected.
In how many ways can the offices be filled?

240 24!
(24—5)! 19!
24%23%22%21%20 = 5,100,480

24 Ps =
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More Examples

(1) Find the number of ways that a party of seven persons can arrange
themselves in a row of seven chairs.

Solution: The seven persons can arrange themselves in a row in
7.6.5.4.3.2.1=7! ways.

(2) How many different ways are there to select 4 different players from 10
players on a team to play four tennis matches. Where the matches are
ordered?

Solution: P(10, 4) = 10.9.8.7 = 5040.

(2) Find nif, P(n,2)=72.
Solution: P(n,2) = n(n-1)

Hence n(n-1) = 72 or

(n-9)(n+8)=0

Since n must be positive, the only answer is n=9.
(3) Find n if 3P(n,2) + 27 = P(3n, 2).

(4) How many permutations of {a, b, ¢, d, e, f, g} end with a.
Solution: 720

Note that the set has 7 elements

The last character must be a

The rest can be in any order

Thus, we want a 6-permutation on the set {b, c, d, e, f,g}
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Distinguishable Permutations

o Consider all the permutations of the letters in the word BOB.
Since there are three letters, there should be 3! = 6 different permutations.

o Those permutations are BOB, BBO, OBB, OBB, BBO, and BOB. Now, while there
are six permutations, some of them are indistinguishable from each other.

o If you look at the permutations that are distinguishable, you only have three
BOB, OBE, and BBO.

o To find the number of distinguishable permutations, take the total number of
letters factorial divide by the frequency of each letter factorial.

N/
(n,H)(n,!)...(n,!) Whereni+nz+ .. +n=N
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Distinguishable Permutations

Examples of distinguishable permutations

(1) Find the number of distinct permutation that can be formed from all
letters of the word "BENZENE".

Solution:

!
P(7:1,3.2) = —~_ — 420
113121

(2) Find the number of distinguishable permutations of the letters in the
word MISSISSIPPT

!
P(1:1,4,4,2) = I 34650
11414121

©B M/ THEMATICS




Combinations

o A Combination is an arrangement of items in which order does
hot matter.

ORDER DOES NOT MATTER!

o Inother words, a combination is an arrangement of objects,
without repetition, and order not being important.
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Combinations

Example 1: List all permutations of the letters ABCD in group of 3.

There are only four combinations (ABC, ABD, ACD, and BCD).
Listed below each of those combinations are the six
permutations that are equivalent as combinations.

ABC

ABC
ACB
BAC
BCA
CAB
CBA

« Since the order does not matter in combinations, there are fewer combinations
than permutations. The combinations are a "subset" of the permutations.

ABD

ABD
ADB
BAD
BDA
DAB
DBA

ACD

ACD
ADC
CAD
CDA
DAC
DCA

BCD

BCD
BDC
CBD
CDB
DBC
DCB
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Combinations

o The number of combinations of n objects taken r at a time is denoted by

C(n,r) or Clj

o To find the number of Combinations of n items chosen r at a time, you can
use the formula

o Thenandrinthe formula stand for the total number of objects to
choose from and the number of objects in the arrangement, respectively.

'
n!
C = where 0<r<n.
nr rl(n-r)
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Combinations

Practice:

To play a particular card game, each player is dealt five
cards from a standard deck of 52 cards. How many
different hands are possible?

Answer Now
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Combinations

Practice:

To play a particular card game, each player is dealt five
cards from a standard deck of 52 cards. How many
different hands are possible?

52! 52!
51(52—-5)! 547!
® E ® ®
52+51%50%49%48 ) (o0 g
5#4%3%2%]
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Combinations

Practice:

A student must answer 3 out of 5 essay questions on a
test. In how many different ways can the student select
the questions?

Answer Now
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Combinations

Practice:

A student must answer 3 out of 5 essay questions on a
test. In how many different ways can the student
select the questions?

5! 51 5%4

sCs = = = =
3(S5-3)! 312! 2*1

10
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Combinations

Practice:

A basketball team consists of two centers, five forwards,
and four guards. In how many ways can the coach select a
starting line up of one center, two forwards, and two

guards?

Answer Now
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Combinations

Practice:

A basketball team consists of two centers, five forwards,
and four guards. In how many ways can the coach select a
starting line up of one center, two forwards, and two

guards?
Center: Forwards: Guards:
N ) 5%4 4 4*3
C — — 2 5C2 — = = 10 4C2 = = =
21 1'1! 2131 2*1 212! 2*1

2C1 * 5C2 * 4C2

Thus, the number of ways to select the starting line up is 311
2*10*6 = 120.



More Examples

(1) How many committees of three can be formed from eight people?
Solution: Number of committees that can be formed is . ~(5)- 52 - so

3.2.1

(2) A farmer buys 3 cows, 2 pigs and 4 hens from a man who has 6 cows, 5 pigs
and 8 hens. How many choices does the farmer have?

Solution: The farmer can choose the cows in (5 ) ways, the pigs in @] ways, and
the hens in|(, | ways. €158
Hence alTogeTher' he can choose the animals in [JtJLJ =20.10.70 = 14000 ways.

(3) How many committees of five with a given chairperson can be selected from
12 persons?

Solution: The chairperson can be chosen in 12 ways and, following this, the

other four on the committee can be chosen from the eleven remaining in [ j

ways. Thus there are 12 ( j 12.330 = 3960 such committees.
(4) How many ways are there to select 5 players from a 10-member tennis to
make a trip to a match at another school?
Solution: €(10,5) = 101/(5!5!) = 252.
(5) How many ways are there to select a committee to develop a discrete
mathematics course at KFU if the committee is to consist of 3 faculty members
from the mathematics department and 4 from the computer science
department, if there are 9 faculty members of the mathematics department
and 11 of the computer science department 312
Solution: The number of ways to select the committee is:

o 11!

C(9,3).C(11,4) = — .— =84.330 = 27720.
316! 417!



Lecture(19)
Chapter(5)

Counting

O The Pigeonhole Principle.
O The Inclusion-Exclusion Principle.

O Ordered and Unordered Partitions.
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The pi1geonhole principle

o Suppose you have k pigeonholes and n pigeons to be placed in
them. If n > k (# pigeons > # pigeonholes) then at least one
pigeonhole contains at least two pigeons.

o If k+l or more objects are placed into k boxes, then there is at
least one box containing two or more of the objects.




The pigeonhole principle

o Generalized Pigeonhole Principle: If n pigeonholes are
occupied by kn+l or more pigeons, where k is a positive
integer, then at least one pigeonhole is occupied by k+1 or
more pigeons.

o Illustration:

- Suppose a department contains 13 professors. Then two of
the professors (pigeons) were born in the same month
(Pigeonhole).

- Among any group of 367 people, there must be at least two

with the same birthday because there are only 366 possible
birthdays.

- Inany group of 29 Arabic words, there must be at least two
that begin with the same letter, since there are 28 letters in
the Arabic alphabet.

- In a group of 27 English words, at least two words must
start with the same letter. As there are only 26 letters
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The pigeonhole principle

Example: Find the minimum number of students in a class to
be sure that three of them are born in the same month.

Solution: Here the n=12 months are the pigeonholes and
k+1=3, or k=2. Hence among any kn+1=25 students
(pigeons), three of them are born in the same month.

Example: What is the minimum number of students required
in a discrete mathematics class to be sure that at least

six will receive the same grade, if there are five possible
grades, A, B, C, D, and F?

Solution: Here there are n=5 grades (pigeonholes) and K+1
=6, or K=5. Thus among any kn+1=26 students (pigeons),
six of them have the same grade.
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The Inclusion-Exclusion Principle

o The inclusion-exclusion principle is a counting technique which
generalizes the familiar method of obtaining the number of
elements in the union of two finite sets.

o Inother words, is a way to avoid over counting

(1) If X = AuB and ANB = g, then |X]| = |A| + [B].

A B

o If agroup of objects X is split into Two groups - denoted A and B, which means that
they have no common elements (ANB = &) and together combine intfo the whole
(X = AuUB), then the number of elements |X| in the group X can be arrived at by first
counting elements of A and then counting elements of B. 317
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The Inclusion-Exclusion Principle

(2) If A and B are not disjoint, we get the simplest form of
the Inclusion-Exclusion Principle:

|AUB|=|A[+|B|-|ANB].

ANB

Indeed, in |A| + |B| some elements have been counted. The elements that were counted
twice are exactly those that belong o A (one count) and also belong to B (the second
count). In short, counted twice were the elements of ANB. To obtain an accurate number
| AUB| of elements in the union we have to subtract from |A| + |B| the number |ANB| of

such elements. 31 8
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The Inclusion-Exclusion Principle

Theorem: For any finite sets A, B, C we have

AUBUC|=|4]+|B|+|C|-|ANB|-|ANC|-|BNC|+|ANBNC]

=
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The Inclusion-Exclusion Principle

For example, for the three subsets
A1={2,3,7,9, 10},
A2={1, 2, 3, 9}, and
As = {2, 4, 9, 10} of S = {lI, 2, .., 10}, the following table
summarizes the terms appearing the sum.

# |term set length

1 At {2,3,7,9, 10} 5
A2 (1,2, 3,9} 4

A3 {2,4,9,10} 4

2 AlNA2 {2,3,9} 3
AINA3 {2,9, 10} 3

A2 A3 {2,9} 2

3 A1NA2NA3 (2,9} 2

|AtUA2 UA3| = (B+4+4)-(3+3+2)+2=7
corresponding to the seven elements
A1UA2UA3={1,2,3,4,7,9, 10}
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The pigeonhole principle

Example: Find the number of mathematics students at a college
taking at least one of the languages French, German, and
Russian given the following data:

65 study French 20 study French and German
45 study German 25 study French and Russian
42 study Russian 15 study German and Russian

8 study all three languages.

Solution: We want to find n(FuU 6 U R) where, F, G, and R
denote the sets of students studying French, German, and
Russian, respectively.

By the inclusion-exclusion principle,

n(FuU 6 UR)=n(F)+n(G)+nR)-n(FMGE)-nlF M R)-
n(G MR)+n(F MG M R)

=65+45+42-20-25-15+8=100
Thus 100 students study at least one of the languages. 320



Partitions

o if we wish to divide a set of size n into disjoint subsets, there are
many ways to do this. Example six friends A, C, M, S, R and B have
volunteered to help at a fundraising show. One of them will hand
out programs at the door, two will run a refreshments stand and
three will help guests find their seats. In assighing the friends to
their duties, we need to divide or partition the set of 6 friends
into disjoint subsets of 3, 2 and 1. There are a number of
different ways to do this, a few of which are listed below:

Prog. Refr. Usher
A CM SRB
C AS MRB
M CM ASR
S SR ASM
R SR SAB
B CM RMC

322

This is not a complete list, it is not difficult to think of other possible partitions



Ordered Partitions

o A partition is ordered if different subset of the partition have
characteristics that distinguishes one from the other

Example In the above example, all three subsets of the partition have different
sizes, so they are distinguishable from each other.

Example: If we wish to partition the group of six friends into three groups of
two, and assigh two to hand out programs, two to the refreshments stand and
two as ushers, we have an ordered partition because the groups have different
assignments. The following two partitions are counted as different ordered
partitions:

Prog. | Refr. Usher

AS CM RB

CM AS RB
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Ordered Partitions

0 SuWose a bag A contains seven marbles numbered 1 through
7. We compufe the number of ways we can draw, first, two
marbles from the bag, then three marbles from the bag, and
lastly two marbles from the bag.

o Inother words, we want to compute the number of ordered
partitions [A1,A2,As] of the set of seven marbles into cells A:
containing two marbles, Az containing three marbles and As
containing two marbles.

o We call these ordered partitions since we distinguish
between [{1,2}{3,4,5}{6,7}] and[{6,7}{3,4,5}{1,2}]
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Ordered Partitions

o Now we begin with seven marbles in the bag, so there are [Q ways of
drawing the first two marbles, i.e. of determining the first cell As; 5
following this, there are five marbles left in the bag and so there are | 5
ways of drawing the three marbles, i.e. of determining the second cell
Az; finally, there are two marbles left in the bag and so there are [ij
ways of determining the last cell As. Hence there are

CIG)(5 = 2

different ordered partitions of A into cells A1 containing two marbles,

A: containing three marbles, and As containing two marbles.

7\(5Y2) 7 s 20 7
2030 2) 215312172100 213121

o The above discussion can be shown to holed in general by the
following theorem.

o Now observe that
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Ordered Partitions

Theorem: Let A contain n elements and let ny, ne, ..., nr be positive
integers whose sum is n, that is, ni+nz+..+n-=n. Then there exist

n!

n,'n,'n;!'....n !

r

different ordered partitions of A of the form [A1,A-,..A-] where A1
contains n: elements, A: contains n: elements,..., and A- contains n-
elements.

Example: Find the number m of ways that nine toys can be divided
between four children if the youngest child is to receive three toys
and each of the others two toys.

Solution: We wish to find the number m of ordered partitions of the
nine toys into four cells containing 3, 2, 2, 2 toys respectively. By
above theorem

ol

m= ="7560
31212121 326




Ordered Partitions

Example: In how many can nine students be partitioned into three
teams containing four, three, and two students, respectively?

Solution: We wish to find the number of ordered partitions of the
nine students into three cells containing 4, 3, 2, student
respectively. By the theorem the number of ordered partitions
are

ol
413121

=1260
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Unordered Partitions

o A partition is unordered when no distinction is made between

subsets of the same size (the order of the subsets does not
matter).

o We use the “overcounting” principle to find a formula for the
humber of unordered partitions.

Example: Suppose we wish to split our group of 6 friends A, C, M, S,
R and B into three groups with two people in each group. In this
case, we do not have any particular task for each group in mind
and we are interested only in finding out how many different
ways we can divide the group of 6 into groups of two. In
particular the six pairings shown below give us the same

unordered partition and is counted only as one such unordered
partition or pairing.

AS CM SRB
CM AS MRB
AS CM ASR
CM SR ASM
RB SR SAB
RB CM RMC
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Unordered Partitions

o The above single unordered partition would have counted as six
different ordered partitions if we had a different assignment
for each group as in Examples above. Likewise each unordered
partition info three sets of two gives rise to 3! ordered
partitions and we can calculate the number of unordered
partitions by dividing the number of ordered partitions by 3!
Hence a set with 6 elements can be partitioned into 3 unordered
subsets of 2 elements in

1 (6 ) ol 6

322 3000 3121

o Inasimilar way, we can derive a formula for the number of
unordered partitions of a set.

o A set of nelements can be partitioned into k unordered subsets
of r elements each (kr = n) in the following number of ways:

l(n ) nl ol 3929
R T L A Al

ways




Unordered Partitions

Example: Find the number m of ways that 12 students can be
partitioned into three teams, Ai, Az, and As, so that each fteam
contains four students.

Solution: Observe that each partition {A1,A2,As} of the students can
be arranged in 3! = 6 ways as an ordered partition. By above

theorem there are
12!

414!

such ordered partitions. Thus there are m=34650/6 = 5775
unordered partitions.

= 34650
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Unordered Partitions

Example: In how many ways can 12 students be partitioned into four
teams, A1,A2,A3, and A4, so that each team contains three
students?

Solution: Observe that each partition {A1,A2,A3,As} of the students
can be arranged in 4l=24 ways as an ordered partition. By the
theorem there are

12!
31313!13!

= 369600

such ordered partitions. Thus there are 369600/24 =15400
unordered partitions.
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Exercises

1. Let aand b be positive integers. Suppose the function Q(a, b)
is givenby  O(a,b) = {2 fra<b

O(a—b,b+3)+ab if b<a

Find a) Q(8, 3) b) Q(2, 7)
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2. Find the solution of the recurrence relation
(a) h n= th—l + 6an_2, ho = 3 and h1 =4

(b) h n= 10h1’l—1 - 25an_2, h0= 2 and hl =15
3. Find the generating function for the sequence given recursively by:
An,=Qay_1+2a,_5, ay=7anda; =7

17
4. Find the values of the extended binomial coefficients ( 9 J

5. In how many ways can 12 students be partitioned into four teams, so
that each team contains three students?
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6. Find the multiplicative inverse of a generating function given
by the sequence g, =2
7. By the inclusion-exclusion principle ‘A UBU C‘ =

8. How many 6 character passwords can be made using only
1,3,5,7,a,b,c,d, eor f. Assuming no character is used more than once.

9. Tow eleven member soccer teams are to be selected from 34 students,
18 of them girls and 16 boys. How many ways to select the tfeams if one
team is to be all girl?
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10. The Fibonacci sequence satisfies the recurrence ...............
with f1=2, f2=?

11. Count the permutations of the letters of the word BALACLAVA.

12. How many moves will it take to transfer the disks from the left
post (A) to the right post (C)?

13.Findnif 3P(n,2) + 27 = P(3n, 2).
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14. In the movie there are 12 children in the family.

(a) Prove that at least two of the children were born on the same day
of the week.

(b) Prove that at least two family members (including mother and
father) are born in the same month.

(c) Find the minimum number in (a) and (b) born on the same week and
same month respectively.
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Introduction

o What is a graph?
We begin by considering Figs. 1.1 and 1.2, which depict part of a road map
and part of an electrical network.

Fig. 1.1

Fig. 1.2 338



Introduction

o Either of these situations can be represented diagrammatically by means of
points and lines, as in Fig. 1.3. The points P, g, R, S and T are called vertices,
the lines are called edges, and the whole diagram is called a graph.

P Q verktex
- o Verte
"--\.._‘ __.-"'-... |H'x~
~ ...-._____.-'- I "\-.\,Hkx
> | ®A
HM'H':J"’HJ f
T S edge

Fig 1.3

o Note that the intersection of the lines PS and QT is not a vertex, since it does
not correspond to a cross-roads or to the meeting of two wires.

o Thus, a graph is a representation of a set of points and of how they are

joined up. 339



Introduction

o Informally, a graph is a diagram consisting of points, called vertices, joined
together by lines, called edges; each edge joins exactly two vertices.
o A graph G is a triple consisting of a vertex set of V(G), an edge set E(G).

Example:

(4]
27 T®

- V:={1,2,3,4,5,6,7)}

- E:={{1,2}, {2,4}, {2,3}, {4,5}, {4,6}, {6,7}} 340



Introduction
o Adjacency

We say that two vertices v and w of a graph G are adjacent if there is an edge
vw joining them, and the vertices v and w are then incident with such an edge.
Similarly, two distinct edges e and f are adjacent if they have a vertex in
common. The vertices v and w are called endpoints of the edge {v, w}.

v W o - =
» o i B =
adjacent vertices adjacent edges

o Loop and Multiple Edges
A loop @ is an edge whose endpoints are equal i.e., an edge joining a
vertex to it self is called a loop. We say that the graph has multiple
edges if in the graph two or more edges joining the same pair of
vertices. y

X

Multiple Edge: 341



Undirected and Directed Graphs

o Undirected graph: The edges of a graph are assumed to be unordered
pairs of nodes. Sometimes we say undirected graph to emphasize this point.
In an undirected graph, we write edges using curly braces to denote
unordered pairs. For example, an undirected edge {2,3} from vertex 2 to
vertex 3 is the same thing as an undirected edge {3,2} from vertex 3 to
vertex 2.

o Directed graph: In a directed graph, the two directions are counted as
being distinct directed edges. In an directed graph, we write edges using
parentheses to denote ordered pairs. For example, edge (2,3) is directed
from 2 to 3, which is different than the directed edge (3,2) from 3 to 2.
Directed graphs are drawn with arrowheads on the links, as shown below:

Undirected graph (V,.E,) Directed graph (V..E) Easier way to draw 342
V,={1,2,3} V,={1,23} directed graph (V..E,)
E,={{1.2.{2.3}{3.1}} E, ={(1,2).(2.3).(3.2),(1.3)}



Simple Graphs and Multigraphs

o Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.

o Multigraph

A multigraph, as opposed to a simple graph, is an undirected graph in which
multiple edges (and sometimes loops) are allowed.
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Neighborhood and Degree

o Two vertices are called adjacent if they share a common edge, in which case the
common edge is said to join the two vertices. An edge and a vertex on that edge are
called incident.

o See the 6-node graph Fig 1.4 for examples of adjacent and incident:

* Nodes 4 and 6 are adjacent (as well as many other pairs of nodes)

* Nodes 1 and 3 are not adjacent (as well as many other pairs of nodes)

* Edge {2,5}is incident to node 2 and node 5.

o The neighborhood of a vertex vin a graph G is the set of vertices adjacent to v. The
neighborhood is denoted N(v). The neighborhood does not include v itself. For
example, in the graph below N(5) = {4,2,1} and N(6) = {4}.

o The degree of a vertex is the total number of vertices adjacent to the vertex. The
degree of a vertex v is denoted deg(v). We can equivalently define the degree of a
vertex as the cardinality of its neighborhood and say that for any vertex v, deg(v)

= [N(v)].
Vertex | Degree

1 2

Fig 1.4

| |W|N

3
2
3
3
1
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Degree of a Vertex

Theorem: The sum of the degrees of the vertices of a graph G is equal to twice

the number of edges in G, i.e.  2e= Y deg(v)

veV

lllustration: Consider the graph in Fig 1.4. The sum of degrees equals 14 which, as
expected, is twice the number of edges.

Example: How many edges are there in a graph with 10 vertices each of degree 67?
Solution: It follows that 2e = 60. Therefore, e = 30.

o A vertex is said to be even or odd according as its degree is an even or an odd
number. Thus 1 and 3 are even whereas 2, 4, 5 and 6 are odd vertices in Fig 1.4.

o The Theorem also holds for multigraphs where a loop is counted twice toward
the degree of its endpoint. For example, in the below graph we have deg (V) = ?
Why.

vV —

345

o A vertex of degree zero is called an isolated vertex.



Finite Graphs & Trivial Graph

o A finite graph is a graph in which the vertex set and the edge set are finite
sets. Otherwise, it is called an infinite graph.

o Most commonly in graph theory it is implied that the graphs discussed are
finite. If the graphs are infinite, that is usually specifically stated.

o The finite graph with one vertex and no edges, i.e., a single point, is called the
trivial graph.

n=4 " o o o

n=23

[ "




Subgraphs Graphs

o A subgraph of a graph G is a graph, each of whose vertices belongs to V(G) and
each of whose edges belongs to E(G). Thus the graph in Fig. 2.13 is a subgraph
of the graph in Fig. 2.14, but is not a subgraph of the graph in Fig. 2.15, since
the latter graph contains no 'triangle’.

Fig. 2.13

Fig. 2.14

“‘\x ;}t\‘\ ;’;. 347

Fig. 2.15



Subgraphs Graphs

o We can obtain subgraphs of a graph by deleting edges and vertices. If e is an
edge of a graph G, we denote by G - e the graph obtained from G by deleting
the edge e. More generally, if F is any set of edges in G, we denote by G - F the
graph obtained by deleting the edges in F. Similarly, if v is a vertex of G, we
denote by G - v the graph obtained from G by deleting the vertex v together
with the edges incident with v. More generally, if S is any set of vertices in G,
we denote by G - S the graph obtained by deleting the vertices in S and all
edges incident with any of them. Some examples are shown in Fig. 2.16.

T E /'“ ﬁf; /' /:
@ (\\ ‘ I .K“H / |
- . S pa - .

Fig. 2.18

348



Isomorphic Graphs

o Tow simple graphs G and H are isomorphic if there is a bijection Q: V(G)— V(H)
which preserves adjacency and nonadjacency uv € E(G) < Q(u)Q(v) e E(H)

o In another words, Two graphs G: and G: are isomorphic if there is a one-one
correspondence between the vertices of G: and those of G: such that the
number of edges joining any two vertices of G: is equal to the number of edges
joining the corresponding vertices of Gz. Thus the two graphs shown in Fig. 2.3
are isomorphic under the correspondence u «<—>1,v <> m, w<— n, x<— p,

O Y<«—>q,Z2<—>Tr

. . » . .
-'l. F _-'l-
.h'.h.‘ .- .I- .II-II
."*-.__ of ¢
i k".\, .._.l
' { X [y . W ' 1
,J"J ¥ ' .I'.J
® ® ® . ®
AR 2 349

Fig, 2.3



Isomorphic Graphs

Example: (a) Show that the graphs G(U, E) and H(V, F) are isomorphic in Fig 2.17.
(b) show that the graphs displayed in Fig 2.18 are not isomorphic.

ule @ u?2 v v2
U3‘ G .u4 - V3 H v4
Figure 2.17
b b
a C a C
Fig. 2.18
. ; o 390




Isomorphic Graphs

Solution:
(a) The function f with f(u1) = v1, f(u2) = va, f(us) = vs3, and f(us) = v2 is a one-to-

one correspondence between V and W. We see that this correspondence
preserves adjacency.

Solution:
(b) Both G and H have five vertices and six edges. However, H has a vertex of

degree 1, namely e, whereas G has no vertices of degree 1. It follows that G
and H are nor isomorphic.
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Walks: paths, cycles, trails and circuits

o A walk is an alternating sequence of vertices and connecting edges.

Less formally a walk is any route through a graph from vertex to vertex along
edges. A walk can end on the same vertex on which it began or on a different
vertex. A walk can travel over any edge and any vertex any number of times.

@)

©)

The number of edges in a walk is called its length.

A path is a walk that does not include any vertex
twice, except that its first vertex might be the same
as its last. A simple path is a path in which all
vertices are distinct.

A trail is a walk that does not pass over the same
edge twice. A trail might visit the same vertex twice,
but only if it comes and goes from a different edge
each time.

A cycle is a path that begins and ends on the same
vertex (does not repeat vertices)

A circuit is a trail that begins and ends on the same
vertex.

P
2P
2P
@ﬂ 354



Walks: paths, cycles, trails and circuits

Example:
Consider the graph G below and consider the following sequences:
A=(P4,P1,P2,Ps,P1,P2,P3,Ps), B=(P4,P1,Ps,P2,Ps)
C=(P4,P1,Ps,P2,P3,Ps,Ps), D=(Pa,P1,Ps,P3,Ps)

P1 P2 P3

P4 Ps Pe

o The sequence A is a path from P4 to Ps, but it is not a trail since the edge {P1,P2}

is used twice.
o The sequence B is not a path since there is no edge {P2,Ps]}.

o The sequence C is a trail since no edge is used twice, but it is not simple path

since the vertex Ps is used twice.

o The sequence D is a simple path from P4 to Ps, but it is not the shortest path

(with respect to length) from P4 to Ps.

o The shortest path from P4 to Ps is the simple path (Ps,Ps,Ps) which has length 2.



Walks: paths, cycles, trails and circuits

Example:

(a) Determine a walk, path, trail, closed trail and cycle and their lengths from
the Figure below:

Vi F._,Q/ | g
.\.'\.\_ . -

(b)Isitv—>w —> x —>y —>z —>z —>x atrail?
(c)Isitv—>w —>x —>y —>7z a. path?

(d)Isitv —>w —>x —>y —>z —>x —> v a closed trail?
(e)Isitv—>w —>x —>y —>v acycle
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Connectivity and connected components

o A graph is connected if there is a path connecting every pair of vertices.

o A graph that is not connected can be divided into connected
components (disjoint connected subgraphs). For example, this graph is made
of three connected components.

I V4 e i

connected disconnected

g .




Connectivity and connected components

Example:

How many connected components in the below Figures?
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Distance and Diameter

o Consider a connected graph G. The distance between vertices u and vin G,
written d(u,v), is the length of the shortest path between u and v.

o The diameter of G, written diam(G), is the maximum distance (longest
shortest path) between any two points in G.

Example:
Find the d(1, 6) and the diam (G) in the following graphs.

O

G 359



Distance and Diameter

Example:
What are the diameter of this graph?

(1 b s
O—Q
<

d ¢ I

D(a, c)=D(a, e) =3, D(b, c) =D(b, e) = 2, D(c, a) = D(c, d) =3, D(d, c) =3,
D(e, a) = 3, D(f, a) = D(f, d) = 2. So D(G) = 3 360



Distance and Diameter

Example:
in Fig G the d(A,F)=2 and diam(G)=3, whereas in Fig G’, d(A,F)=3 and diam(G)=4.

G G’ 361



Cutpoints and Bridges

o Among connected graphs, some are connected so slightly that removal of a
single vertex or edge will disconnect them. Such vertices and edges are quite

important.

o Avertex vis called a cutpoint in G if G — v contains more components than G
does; in particular if G is connected, then a cutpoint is a vertex v such that

G — vis disconnected. Similarly, a bridge (or cutedge) is an edge whose
deletion increases the number of components.

4
s
4

’
1
‘ e . .
s S
2 -
-
- ~

Edge Cut Vertex Cut
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Hamailtonian Graphs

o A Hamiltonian circuit in a graph G is a closed path that visits every vertex in G
exactly once.




Eulerian Graphs

o A Eulerian circuit traverses every edge exactly once, but may repeat vertices,
while a Hamiltonian circuit visits each vertex exactly once but may repeat
edges.

W

G1 a2
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Labeled and weighted graphs

o A graph G is called labeled graph if its edges and/or vertices are
assigned data.

o In particular, G is called a weighed graph if each edge e of G is
assigned a nonnegative number denoted by w(e) and called the
weight or length e.

o The below Figures shows a weighed graph where the weigh of each
edge is given in the obvious way.

o The weight (or length) of a path in such a weighted graph G is
defined to be the sum of weights of the edges in the path.

1.2 Edge List
1212

- ' 2402 O—0) O—G

B g 1.5 4503 | s 2 5 :
L & . 4105 O 12 0
4 s 5 5405 - ©

" 6315 366
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Labeled and weighted graphs

o One important problem in graph theory is to find a shortest path, that
is, a path of minimum weight (length), between any two given vertices.

o The length of a shortest path between P and Q in fig. 4.1 is 14; one
such path is (P,A1,A2,A5,A3,A6,Q)

o How the reader can find another shortest path?

Fig. 4-1
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Labeled and weighted graphs

o Example: Find the shortest path between a and z

368



Labeled and weighted graphs

o Example: Find the shortest path between a and z
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Labeled and weighted graphs

Some algorithms

o Most important advances in graph theory arose as a result of attempts
to solve particular practical problems - Euler and the bridges of
Konigsberg.

o We briefly describe one problem the shortest path problem which can
be solved by an efficient algorithm - that is, a finite step-by-step
procedure that quickly gives the solution.

The shortest path problem

o Suppose that we have a "map"” of the form shown in Fig 4.2, in which
the letters A-L refer to towns that are connected by roads. If the
lengths of these roads are as marked, what is the length of the
shortest path from A to L?

o Note that the numbers in the diagram need not refer to the lengths
of the roads, but could refer to the times taken to travel along them.
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Labeled and weighted graphs

o The idea is to move across the graph from left to right, associating
with each vertex V a number L(V) indicating the shortest distance
from A to V.

o To apply the algorithm, we first assign A the label O and give B, E and C
the temporary labels L(A) + 3, L(A) + 9 and L(A) + 2 - that is 3, 9 and 2.
We take the smallest of these, and write L(C) = 2. C is now permanently
labelled 2.

o We next look at the vertices adjacent to C. We assign F the temporary
label L(C) + 9 = 11, and we can lower the temporary label at E o L(C) + 6
= 8. The smallest temporary label is now 3 (at B), so we write L(B) = 3.
B is now permanently labelled 3.

o Now we look at the vertices adjacent to B. We assign D the temporary
label L(B) + 2 = 5, and we can lower the temporary label at E to L(B) + 4
= 7. The smallest temporary label is now 5 (at D), so we write L(D) = 5.
D is now permanently labelled 5.

o Continuing in this way, we successively obtain the permanent labels L(E)
=7,L(6)=8,L(H)=9,L(F)=10,L(T)=12,L(J) = 13, L(K) = 14, L(L) = 17

o It is shown in Fig 4.3, with circled numbers representing the labels at
the vertices.
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Complete Graphs

o A graph G is said to be complete if every vertex in G is connected
to every other vertex on 6.

o Thus a complete graph 6 must be connected.
o The complete graph with n vertices is denoted by Kn.

o The Figures below shows the graphs K: through Ks.

ARG

Ey K ;
374



Regular Graphs

o A graph G is regular of degree K or k-regular if every vertex has degree K.

o Inother words, a graph is regular if every vertex has the same degree.
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Regular Graphs

©)

©)

Tge connected O-regular graph is the trivial graph with one vertex and no
edges.

The connected 1-regular graph is the graph with two vertices and one edge
connecting them.

The 3-regular graphs must have an even number of vertices since the sum of
the degrees of the vertices is an even number.

Note that: The complete graph with n vertices Kn is regular of degree n-1.

r=11 r=1 r=2 r=213 r=4

n=1

JE:E L - —_— =

RN
Q @ 376

Lh

n=



Bipartite Graphs

o If the vertex set of a graph & can be partitioned into two subsets A and B
so that each edge of G joins a vertex of A and a vertex of B, then G is a
bipartite graph.

o Alliteratively, a bipartite graph is one whose vertices can be coloured black and white in such
a way that each edge joins a black vertex (in A) and a white vertex (in B).

B

Bipartite MOT Biparite
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Bipartite Graphs

o A complete bipartite graph is a bipartite graph in which each vertex in A is
joined to each vertex in B by just one edge. We denote the bipartite graph
with r black vertices and s white vertices by krs: ki3, ka3, ks 3, ks4 are shown in

the below Figures. Cleary the graph Km,n has mn edges.
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Planar graphs

o A graph G is planar if it can be drawn in the plane in such a way that no
two edges meet each other except at a vertex to which they are
incident. Any such drawing is called a plane drawing of 6.

o For example, the graph k4 is planar, since it can be drawn in the plane
without edges crossing.

Q O

O O

o The complete graph with four vertices K4 is usually pictured with crossing
edges as in the above Figure, it can also be drown with non-crossing edges
as in the following Figures




Planar graphs

AL A
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Graph Colorings

o Remember that two vertices are adjacent if they are directly
connected by an edge.

o A coloring of a graph G assigns a color to each vertex of G, with the
restriction that fwo adjacent vertices never have the same color.

N>, N

o The chromatic number of G, written X(G), is the smallest number of
colors needed to color G so that no two adjacent vertices share the
same color.

YiKg) =6 yiCs)=3 yic) =2

W L) )

(561 =12 yiW5) =3 YiWg) =4

o e

()

%



Graph Colorings

o An algorithm by Welch and Powell for a coloring of a graph 6. We
emphasize that this algorithm does not always yield a minimal coloring of
G.

o Algorithm (Welch-Powell):

Step 1. Order the vertices of G according to decreasing degrees.

Step 2. Assign the first color Ci to the first vertex and then, in
sequential order, assign Ci1 to each vertex which is not adjacent to a
previous vertex which was assigned Ci.

Step 3. Repeat step 2 with a second color C2 and the subsequence of
noncolored vertices.

Step 4. Repeat step 3 with a third color Cs3, then a fourth color C4, and so
on until all vertices are colored.

Step 5. Exit.
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Graph Colorings

o Example: Use the Welch-Powell algorithm to paint the
following graph. Find the chromatic number n of the graph.

AIC/ o P2 \) A3

A4 AS A A6

A8

A7
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Graph Colorings

Solution:

Ordering the vertices according to decreasing degrees yields

As, A3, A7, A1, Az, A4, As, As
« The first color is assignhed to vertices As and A1.

« The second color is assigned to vertices A3, A4 and As.
« The third color is assigned to vertices A7, Az, and Ae.
« All the vertices have been assigned a color, and so G is 3-colorable.

« The chromatic number x(G) = 3.

Al ~ A2 A3

\

A4 A5 4 A6
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Graph Colorings

Example:

Use the Welch-Powell algorithm to paint the following graph.
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Graph Colorings

Solution:




Graph Colorings

Example:

What is the chromatic humber of the graph shown below?

b

€

g

The chromatic number must be

at least 3 since a, b, and ¢ must

be assigned different colors. So
lets try 3 colors first.

3 colors work, so the chromatic
number of this graph is 3.
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Graph Colorings

Example:

What is the chromatic humber for each graph?
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Graph Colorings

Example:

What is the chromatic humber for each graph?

Green
Blue Red
Black
Red Blue
Black Green
Blue Red
Chromatic number: 2 Chromatic number: 3
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Graph Colorings

Example:

(a) What is the chromatic number of Kn?

(b) What is the chromatic number of Knm where m and n are positive integers?
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Graph Colorings

Solution:

(a) A coloring of Kncan be constructed using n colors by assigflning a different
color to each vertex. Is there a coloring using fewer colors? The answer is no.
No two vertices can be assigned the same color, because every two vertices of
this graph are adjacent. Hence, the chromatic number of Kn = n.

(b) The chromatic number for Knm is 2 because it is a bipartite graph. This
means that we can color the set of m vertices with one color and the set of n
vertices with a second color. Because edges connect only a vertex from the
set of m vertices and a vertex from the set of n vertices, no two adjacent

vertices have the same color.
A e
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Introduction

o A directed graph (or digraph) is a graph, or set of vertices connected by
edges, where the edges have a direction associated with them.

start

o Applications

fill pan take egg
- digital computer or flow system with water]  |from fridge
- one-way streets v . ¥
- flights add salt break egg
- task scheduling | to water | | into pan]

boil
water

A directed graph
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Directed Graphs

o A directed graph is graph, i.e., a set of objects (called vertices or nodes)
that are connected together, where all the edges are directed from one
vertex to another. A directed graph is sometimes called a digraph.

o A directed graph is an ordered pair 6 = (V, A) (sometimes 6 = (V, E)) with:

- V a set whose elements are called vertices, nodes, or points;
- A aset of ordered pairs of vertices, called arrows, directed edges.

nhodes (or vertices)

edges
(or links)
/
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Directed Graphs

Suppose e = (u,v) is a directed edge in a digraph G, the following terminology is

used:
(@) e begins at uand ends at v.
(b) uis the initial point of e, and v is the terminal point of e.
(c) vis the successor of u. o .
(d) uisadjacent to v, and v is adjacent from u. & Initial point

(e)

If u=v, theneis called a loop.

A loop begins and ends at 1

J

Terminal point 396



Directed Graphs

o The set of all successor of a vertex u is defined by:
Succ(u) = {v belong to V: there exists (u,v) belong to E).
It is called the successor list of u.

o If the edges and/or vertices of a directed graph G are labeled with some
type of data, then G is called a labeled directed graph.

o A directed graph 6(V,E) is said to be finite if its set V of vertices and its
set E of edges are finite.
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Directed Graphs

Example: Consider the directed graph bellow.

It consists of 4 vertices, A, B, C, D, that is,

V(6) = {A,B,C,D} and the 7 following edges:
E(6)={(A.D).(B.A).(B.A).(D.B).(B.C).(D.C),(B.B)}.

The edges ez and e3 are said to be parallel since they both begin at B and

end at A.

The edge e7 is a loop since it begins and ends at B.

ez

e7

A“) e1 . ,9
e3 €4 €6
B\ €5 :(“) C
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Subgraphs

o Let 6 =(V,E) be a directed graph, and V: be a subset of V and E:
subset of E such that the endpoints of the edges in E: belong to V..

o Then H(V1,E1) is a directed graph, and it is called subgraph of G.

o Inparticular, if E1 contains all edges in E whose endpoints belong to

V1, then H(V1,E1) is called the subgraph of G generated or determined
by V1.

o For example, consider the graph G = 6(V,E) in the previous slide, let
Vi={B,C,D} and E1= {es,e5,e6,e7}

i.e. E1= {(D,B),(B,0).(D,C),(B,B)}, then
H(V1,E1) is the subgraph of G generated by V:.

A e1 y?

~
A

e4
e?2 S6

6 = S 399
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Basic Definitions (Degrees)

o Suppose G is a directed graph. The outdegree of a vertex v of G,
written outdeg(v), is the number of edges beginning at v, and the

indegree of v, written indeg(v), is the number of edges ending at v.

\

In-degree > >  Out-degree

/]
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Basic Definitions (Degrees)

Theorem: The sum of the outdegrees of the vertices of a digraph G
eguals the sum of the indegrees of the vertices, which equals the number
of edges in G.

> deg*(v) => deg (v) =|A|

veV veV

o A vertex with zero indegree is called a source, and a vertex v with
zero outdegree is called a sink.

Source

AN

sink
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Basic Definitions (Degrees)

Example: Consider the following graph, we have:

A, e1 :fg')

_/
A

N

B

’5C
ez

- outdeg(A) = 1, outdeg(B) = 4, outdeg(C) = O, outdeg(D) = 2.

- indeg(A) = 2, inddeg(B) = 2, indeg(C) = 2, indeg(D) = 1

o As expected, the sum of the outdegrees equals the sum of the indegrees,
which equals the number 7 of edges.
o The vertex C is a sink since no edge begins at C. The graph has no sources.
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Basic Definitions (Degrees)

Example: Consider the directed graph G as follows:

(a)
(b)
()
(d)

Find the indegree and outdegree of each vertex of G.
Find the successor list of each vertex of G.

Are there any sources or sinks?

Find the subgraph H of G generated by the vertex set

Vi={X,Y,Z!.
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Basic Definitions (Paths)

o O O O O O O

A (directed) path P in G is an alternating sequence of vertices and directed
edges, say,

P:(Vo,el,Vl,QZ,VZ,---/e"lv")

Such that each edge ei begins at vi: and ends at vi. If there is no ambiquity,
we denote P by its sequence of vertices or its sequence of edges.

The length of the path P is n, its number of edges.

A simple path is a path with distinct vertices.

A trail is a path with distinct edges.

A closed path has the same first and last vertices.

A spanning path contains all the vertices of 6.

A cycle is a closed path with distinct vertices (except the first and last).

A semipath is the same as a path except the edge ei may begins at vi-1 or vi
and end at the other vertex.

A vertex v is reachable from a vertex u if there is a path from u to v. If v
is reachable from u, then there must be a simple path from u fo v.
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Basic Definitions (Paths)

Example: Consider the following graph 6.

(a) The sequence P1=(D,C,B,A)is a semipath but not a path since
(C,B) is not an edge; that is, the direction of es = (C, B) does not
agree with the direction of P1.

(b)The sequence P2= (D,B,A) is a path from D to A since (D, B)
and (B, A) are edges. Thus A is reachable from D.

ez
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Connectivity

(i) G is strongly connected, if for any

pair of verticesuand vin G, there is a
path from u to v and a path from v to u
(each vertex can reach all other
vertices).

(ii) G is unilaterally connected if, for any

pair of verticesuand v in G, there is a
path from u to v or a path from v to u,
that is, one of them is reachable from
the other.

(iii) G is weakly connected, if there is a
semipath between any pair of vertices u
and v in G.



Connectivity

Theorem: Let G be a finite directed graph, then:

(@) G isstrong if and only if G has a closed spanning path.
(b) G is unilateral if and only if G has a spanning path .
(c) G isweakif and only if G has a spanning semipath.

Example: Consider the following graph. It is weakly connected. There is
no path from C to any other vertex, so G is not strongly connected.

However, P=(B,A,D,C) is a spanning path, so G is unilaterally connected.

A e1 , ,9
er es €4 €6
h e P
B % 407
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Connectivity

Example: Consider the directed graph G as follows:

V1

V3

‘
V5

(@) Find two simple paths from vi to ve . Is a = (v1,vz,v4,ve) such a
simple path?

(b) Find all cycles in 6 which include vs.

(c) Is G unilaterally connected? Strongly connected?
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Connectivity

Solution:

(a) (vi,vs,ve) and (v1,vz,vs,vs,vs) are two simple path from v: to vs. The sequence a
is not a path since the edge joining v+ to ve does not begin at va.

(b) Two cycles: (vs,vi,ve,vs) and (vs,vs,ve, v1,Ve,vs).

(c) G is unilaterally connected since (vi,vz,v3,vs,vs,v4) is a spanning
path. G is not strongly connected since there is no closed spanning path.
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Connectivity

Example: Are the directed graphs G and

H showing below sfrongly
connected?

Are they weakly
connected?




Connectivity

Solution:

G is strongly connected because there is a path between any two
vertices in this directed graph. Hence, G is also weakly connected.

The graph H is not strongly connected. There is no directed path from
a to b in this graph. However, H is weakly connected, since there is a
path between any two vertices in the underlying undirected graph of H.
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