
Course Objectives

o Logical thinking and identify basic data types such as numbers, sets, and functions

used in computer algorithms and systems.

o Know generating functions and solve recurrence relations,

o Solve counting problems specially permutations and combinations,

o Understand graph theory and their applications,



Plan

No. of WeeksConcept

3Logical Thinking

2Set Theory

2Functions

3Recurrence Relations and Generating Functions

3Counting Techniques

2Graph Theory



Course Description

Chapter(1)

Logical Thinking

1.1 Formal logic.

1.2 Connectives and proposition.

1.3 Truth tables.

1.4 Logical equivalence.

1.5 Propositional logic.

1.6 Predicate logic.

1.7 Formal and informal proofs.



Course Description
Chapter(2)

Set Theory

2.1  Definition of sets.

2.2 Countable and uncountable sets.

2.3 Venn diagrams.

2.4 Proofs of some general identities on sets relation:

i Definition.

ii Types of relation.

iii Composition of relations.

iv Pictorial representation of relation.

v Equivalence relation.

vi Partial ordering relation.



Course Description

Chapter(3)

Function

3.1 Definition

3.2 Type of functions (one to one, into and onto)

3.3 Inverse function, composition of functions.

3.4 Recursively defined functions

3.5 Notion of Proof:

i Proof by counter-example

ii Proof by contradiction

iii Inductive proofs.



Course Description
Chapter(4)

Recurrence Relations and generating functions

2.1  Simple recurrence relations.

2.2 Linear recurrence relations with constant coefficients.

2.3 Solving first order recurrence relations.

2.4 Solving second order linear homogeneous recurrence relation.

2.3 Algebra of generating functions.



Course Description

Chapter(5)

Counting Techniques

3.1 Basic counting principles

3.2 Permutations and Combinations 

3.3 The Pigeonhole principle 

3.4 The inclusion-exclusion principle

3.5 Ordered and unordered partitions 



Course Description

Chapter(6)

Graph Theory
1.4 Introduction.
4.2 Simple graph and multigraph. 
4.3 Subgraphs and isomorphic graphs.

4.4 Paths and weighted graphs. 
4.5 Labeled and weighted graphs.
4.6 Complete, Regular, and Bipartite graphs.

4.7 Planar graphs.

4.8 Graph coloring.
4.9 Euler and Hamilton graphs.



Reference

1) List Required Texbooks

David J. Hunter, “Essential s of Discrete Mathematics” Third edition, 2015, Jones   

& Bartlett Learning. ISBN-13:978-1284056242.

2) List essential references materials (Journals, Reports, etc.)

Kenneth H. Rosen, “Discrete mathematics and its applications” Seventh         

edition, 2012,  McGraw-Hill. ISBN: 978-0073383095.

3) List electronic materials, Web sites, Facebook, Twitter, etc.

Blackboard.



Chapter(1)

Logical Thinking

Lecture(1)

o Introduction

o Formal Logic.

o Connectives and Propositions.
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The goal of this chapter is to help you communicate

mathematically by understanding the basics of logic



Introduction

3

Why logic is important in computer science?

o Logic is the Calculus of Computer Science. A computer is a
machine that processes data into information using logic.

o So the study of Logic is essential for CS, since Logic is involved
in broad range of intellectual activities and it is a base in many
areas of computer science such as artificial intelligence,
algorithms etc.



Introduction
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o Logic is a systematic way of thinking that allows us to deduce
new information from old information and to parse the meanings
of sentences.

o You use logic informally in everyday life and certainly also in 
doing mathematics. 

o For example, suppose you are working with a certain circle, call it
“Circle X,” and you have available the following two pieces of    
information.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is 𝝅𝒓𝟐 square units.

You have no trouble putting these two facts together to get:
3. Circle X has area 9𝝅 square units.

o In doing this you are using logic to combine existing information
to produce new information. Because deducing new information is
central to mathematics, logic plays a fundamental role.



Introduction

5

Notation
o Is an important part of mathematical language.

o We translate a problem to notation and then perform well-
defined symbolic manipulations on that notation.

o This is the essence of the powerful tool called formalism.

o One nice feature of formalism is that it allows you to work
without having to think about what all the symbols mean. In this
sense, formal logic is really ‘’logical not-thinking’’.

Example: If we have 5 employees with a monthly salary 1000 SA
for each one, then the total amount of money they earned is to
5000.

By formalism it is only the multiplication of 5 by 1000 i.e

T: total amount of money

E: number of employees

S: salary for each one

T = ES



Connectives and Propositions
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o In order to formalize logic, we need a system for translating
statements into symbols. We will start with a precise definition
of statement.

Definition: A statement (also known as a proposition) is a
declarative sentence that is either true or false, but not both.

Example:

• 7 is odd.

• 1+1 = 4

• If it is raining, then the ground is wet.

o Note that we don not need to be able to decide whether a
statement is true or false in order for it to be a statement.
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o How can a declarative sentence fail to be a statement?

declarative sentence may contain an unspecified term:

x is even.

The truth of the sentence depends on the value of x, so if that
value is not specified, we can not regard this sentence as a
statement.

Examples:

Statements

• July is the first month of the year. (this is a declarative sentence which is false).
• January is the first month of the year. (this is a declarative sentence which is true)

• The number 2 is even. (this is a declarative sentence which is true).

Non-Statements

• What time is it? (just a question)
• Red is pretty. (we can’t decide)
• 2x+10=14. (x is unknown so we can’t decide)

Connectives and Propositions
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Decide whether or not the following are statements. In the case of 
a statement, say if it is true or false, if possible.

1. x + 3 
2. x + 3 = 4
3. If x and y are real numbers and 5x = 5y, then x = y. 
4. The equation x + 2 = 3 has exactly one solution. 
5. The equation x + 2 = 3 has more than one solution.

Exercises 

Not Statement

Not Statement

Statement, True

Statement, True

Statement, False
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Propositions can be combined with connectives such as (and) and
(implies to) create compound propositions.

Example:

1. 2 is prime number and 4 + 6 = 10.
2. Today it is raining implies that tomorrow the sun will shine.

Writing out the entire text of a compound proposition can be tedious,
particularly if it contains several propositions. As a shorthand, we will use:
lower case letters (like a, b, c, etc.) for simple propositions, and
UPPER CASE LETTERS (like A, B, C, etc.) for compound propositions.

Propositions can be true or false. If we know what truth value to assign one
we can utilize this information. Otherwise, we check what happens when the
proposition is assumed to be true and then false by using a truth table. The
following truth tables reveal the meaning of the various connectives.

Connectives and Propositions
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Connectives:

Connectives and Propositions

o The symbols ¬, ∧, ∨, ⟹ 𝑎𝑛𝑑 ⟺ are called propositional
connectives.

o Their properties are best shown via truth tables.

o Note that (T = True. F = False).

Example: If p is the statement “you are wearing shoes” and 
q is the statement “you can’t cut your toenails,” then𝑝 ⟶ 𝑞

• represents the statement, “If you are wearing shoes, then you 
can’t cut your toenails.” 

• We may choose to express this statement differently in English: 
“You can’t cut your toenails if you are wearing shoes,” or 
“Wearing shoes makes it impossible to cut your toenails.”   
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Negation: ( symbol: ¬ )

Connectives and Propositions

o Interpretation: ¬ a means “not a”.

o Column a has all possible Truth values, however column ¬ a
indicates the Truth values for not a.
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Conjunction: ( symbol: ∧ )

Connectives and Propositions

o Interpretation: a ∧ b means “a and b”.

o Let a and b be propositions. The proposition “ a and b” denoted
by a ∧ b, is the proposition that is true when both a and b are
true and is False otherwise.

o The proposition a ∧ b is called conjunction of a and b.
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Disjunction: ( symbol: ∨)

Connectives and Propositions

o Interpretation: a ∨ b means “a or b”.

o disjunction is true whenever at least one of the propositions
is true. This connective is sometimes called inclusive or to

differentiate it from exclusive or (which is often denoted by +).

o The formula a + b is interpreted as " or , but not both".
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Implication: ( symbol: ⟶)

Connectives and Propositions

o Interpretation: a ⟶ b means “if a then b” (in the mathematical
sense).

o Let a and b be propositions. The implication a ⟶ b, is the
proposition that is false when a is true and b is false and true
otherwise.

o In this implication a is called the hypothesis and b is called the
conclusion.
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Biconditional: ( symbol: ⟷ )

Connectives and Propositions

o Interpretation: a ⟷ b means “a if and only if b”

o The biconditional is true exactly when the propositions have the
same truth value.

o In some texts, the phase "is a necessary and sufficient condition
for b” is used for a ⟷ b.
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Express each statement as one of the forms P ∧ Q,  P ∨ Q, or ¬ P. 
Be sure to also state exactly what statements P and Q stand for.

1. The number 8 is both even and a power of 2.
2. 𝑥 ≠ 𝑦
3. There is a quiz scheduled for Wednesday or Friday.

Without changing their meanings, convert each of the following 
sentences into a sentence having the form “If P, then Q.”

1. Whenever people agree with me I feel I must be wrong.

Without changing their meanings, convert each of the following 
sentences into a sentence having the form “P if and only if Q.”

1. If xy = 0 then x = 0 or y = 0, and conversely.

Exercises 



Chapter(1)

Logical Thinking

Lecture(2)

o Introduction

o Truth Tables

o Connectives and Propositions.

17
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Introduction

o Any statement has two possible values: true (T) or false (F). So
when we use variables such as p or q for statements in logic, we
can think of them as unknowns that can take one of only two
values: T or F. This makes it possible to define the meaning of
each connective using tables.

o Notice that each column in the truth table must contains

2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
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Truth Tables

o You should now know the truth tables for ¬, ∧, ∨,⟶ 𝑎𝑛𝑑 ⟷.

o They should be internalized as well as memorized.

o You must understand the symbols thoroughly, for we now

combine them to form more complex statements.
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o For example, suppose we want to convey that one or the other
of P and Q is true but they are not both true. No single symbol
expresses this, but we could combine them as

(P ∨ Q) ∧ ¬ (P ∧ Q) 

which literally means:

P or Q is true, and it is not the case that both P and Q are true.

Truth Tables
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o This statement will be true or false depending on the truth
values of P and Q.

o In fact we can make a truth table for the entire statement.

o Begin as usual by listing the possible true/false combinations of

P and Q on four lines.

o The statement (P ∨ Q) ∧ ¬ (P ∧ Q) contains the individual
statements (P ∨ Q) and (P ∧ Q), so we next counting their truth
values in the third and fourth columns.

o The fifth column lists values for ¬ (P ∧ Q), and these are just
the opposites of the corresponding entries in the fourth column.

o Finally, combining the third and fifth columns with ∧, we get the

values for (P ∨ Q)∧ ¬(P ∧Q) in the sixth column.

Truth Tables
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Truth Tables

o This truth table tells us that (P ∨ Q)∧ ¬(P ∧Q) is true precisely
when one but not both of P and Q are true, so it has the
meaning we intended.

o Notice that the middle three columns of our truth table are
just “helper columns” and are not necessary parts of the table.

o In writing truth tables, you may choose to omit such columns
if you are confident about your work.

¬¬ ¬¬
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Truth Tables

Example:

consider the following statement concerning two real numbers 𝑥 𝑎𝑛𝑑 𝑦:
The product 𝑥𝑦 equals zero if and only if 𝑥 = 0 𝑜𝑟 𝑦 = 0. 

Build a truth table for it.
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Logical Equivalences

Two statements are logically equivalent if they have the same T/F
values for all cases, that is, if they have the same truth tables.

Example 1: Consider the following theorem. 

If a quadrilateral has a pair of parallel sides, then it has a pair of 
supplementary angles.

Definition:
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Logical Equivalences

o In other words show that 𝒑 ⟶ q is logically equivalent to ¬ 𝒒 ⟶ ¬ 𝒑

o This theorem is of the form p ⟶ q  where

p is the statement that the quadrilateral has a pair of parallel sides and

q is the statement that the quadrilateral has a pair of supplementary angles.

o We can state a different theorem, represented by ¬q → ¬p i.e.

If a quadrilateral does not have a pair of supplementary angles, then it does 
not have a pair of parallel sides

o We know that this second theorem is logically equivalent to the first 
because the formal statement 

p → q is logically equivalent to the formal statement ¬q → ¬p, 

as the following truth table shows.

Solution:
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Logical Equivalences

o Notice that the column for p → q matches the column for ¬q → ¬p. Since the 
first theorem is a true theorem from geometry, so is the second.
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Logical Equivalences

o Let S be the statement “If Aaron is late, then Bill is late, and, if both Aaron 
and Bill are late, then class is boring.” In symbols, S translates to the 
following.

Example 2: If Aaron is late, then Bill is late,

and, if both Aaron and Bill are late, then class is boring.

Suppose that class is not boring. What can you conclude about Aaron?

Solution:

o Let’s begin by translating the first sentence into the symbols of logic, using the
following statements. 
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Logical Equivalences

Now let’s construct a truth table for S. We do this by constructing
truth tables for the different parts of S, starting inside the
parentheses and working our way out.
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Logical Equivalences

o We are interested in the possible values of p. It is given that S is true, so we
can eliminate rows 2, 3, and 4, the rows where S is false.

o If we further assume that class is not boring, we can also eliminate the rows
where r is true.

o The rows that remain are the only possible T/F values for p, q, and r: rows 6
and 8. In both of these rows, p is false.

o In other words, Aaron is not late.
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Write a truth table for the following:

1. P ∨ (Q ⟶ R).

2. (P ∧ ¬ p) ∨ Q.

3. ¬ (¬ P ∧ ¬ Q). 

Use truth tables to show that the following statements are logically. 
equivalent.

1. P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R).

2. P ⟶ Q = (¬ p) ∨ Q.

Exercises 



Chapter(1)

Logical Thinking

Lecture(3)

o Introduction

o Propositional Logic

o Equivalences Rules

o Inference Rules
30

• Tautology

• Contradiction

• Contingency
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Introduction

o In this section we will develop a system of rule for manipulating
formulas in symbolic logic.

o This system, called the propositional calculus, will allow us to
make logical deductions formally.
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Introduction

Definition: 

o A statements that are always true, no matter what the T/F values
of the component statements are, is called a tautology, and we
write

• The notation  𝐴 ⟹ 𝐵 means that the statement 𝐴 ⟶ 𝐵 is true in all cases; in

other words, the truth table for A ⟶ B is all T’s. Similarly, the ⇔ symbol denotes a      

tautology containing the ↔ connective.

o There are also statements in formal logic that are never true. A
statement whose truth table contains all F’s is called a
contradiction.

o A statement in propositional logic that is neither a tautology nor a 
contradiction is called a contingency. A contingency has both T’s 
and F’s in its truth table.
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Example 1:

Use a truth table to show (p ∧ q) ⟶ p is a tautology

Tautology
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Tautology

Solution
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Contradiction

Example 2:

Use a truth table to show p ∧¬p is a contradiction.
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Solution

Contradiction
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Contingency

Example 3:

Use a truth table to show p ∧ q is a contingent
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Contingency

Solution
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Equivalences Rules

o Tautologies are important because they  show how one statement 
may be logically deduced from another. 

o For example, suppose we know that the following statements are 
true.

Our professor does not own a spaceship.
If our professor is from Mars, then our professor owns a spaceship.

o Every tautology can be used as a rule to justify deriving a new 
statement from an old one.

o There are two types of derivation rules:

o Equivalence rule describe logical equivalences.
o Inference rules describe when a weaker statement can be 

deduced from a stronger statement.

• equivalence rules.
• inference rules.
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Equivalences Rules

o The equivalence rules given in following Table could all be checked
using truth tables.

o If A and B are statements (possibly composed of many other
statements joined by connectives), then the tautology A ⇔ B is
another way of saying that A and B are logically equivalent.
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Inference Rules

Modus pones

o When a tautology is of the form (C ∧ D) ⟹ E, we often prefer to write 

This notation highlights the fact that if you know both C and D, then you can conclude E.

Example 4: use a truth table to prove the following.

Solution:  

let S be the statement                                We construct our truth  

table by building the parts of S as following 
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Inference Rules

o Since the column for S is all T’s, this proves that S is a tautology.
the tautology in Example 4 is known as modus ponens. We can stated it
as follows.

If the first, then the second; 
but the first;

Therefore the second.

• “If you have a current password, then you can log on to the network"
• “You have a current password”

Therefore:

• “You can log on to the network”

Example:



43

Inference Rules
Modus tollens

o When a tautology is of the form

o Inference rules work in only one direction.  An inference rule of the 
form            allows you to do only on thing:  

• You can't log into the network

• If you have a current password, then you can log into the network

Therefore

• You don't have a current password.

Example:
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Inference Rules

Example: write a proof sequence for the assertion
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Inference Rules

Solution: 
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Inference Rules

Solution: 

Example: 
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Show that  the following are tautologies: 

1.

2.

Show that                             is a contradiction: 

Show that                             are all contingencies

Show that p ⇔ ¬¬p

Exercises 



Chapter(1)

Logical Thinking

Lecture(4)

o Introduction

o Predicate Logic

48

• Quantifiers

• Translation

• Negation
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Introduction

o Using symbols                             we can deconstruct many English 
sentences into a symbolic form. 

o As we have seen, this symbolic form can help us understand the logical 
structure of sentences and how different sentences may actually have 
the same meaning (as in logical equivalence). 

o But these symbols alone are not powerful enough to capture the full 
meaning of every statement. 

o To help overcome this defect, we introduce Predicate Logic in the next 
slides. 
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Introduction

o When we defined statements, we said that a sentence of the form

is not a statement, because its T/F value depends on x.

o Mathematical writing, however, almost always deals with sentences of 
this type; we often express mathematical ideas in terms of some 
unknown variable.

o This section explains how to extend our formal system of logic to deal 
with this situation.
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Predicate Logic

Predicate Logic deals with predicates, which

are propositions, consist of variables.
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Predicate Logic

Definition: 
predicate is a declarative sentence whose T/F value depends on one
or more variables. In other words, a predicate is a declarative
sentence with variables, and after those variables have been given
specific values the sentence becomes a statement.

We use function notation to denote predicates.

The following are some examples of predicates.

Example 1:

The statement P(8) is true, while the statement Q (feather, brick) false.

Example 2:

If E(x) stands for the equation then E(3) is …………
E(4) is …………

 are predicates
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Definition: 
The domain of a predicate variable is the collection of all possible values
that the variable may take.

Example 1:

Consider the predicate P(x) = “𝑥2 is greater than 𝑥 ”. Then the domain
of x could be for example the set ℤ of all integers. It could alternatively
be the set ℝ of real numbers.
Whether instantiations of a predicate are true or false may depend on the domain
considered.

Example 1:

Consider the predicate P(x, y) = “x > y”, in two predicate variables. We
have ℤ (the set of integers) as domain for both of them.

• Take x = 4, y = 3, then P(4, 3) = “4 > 3”, which is a proposition taking
the value true.

• Take x = 1, y = 2, then P(1, 2) = “1 > 2”, which is a proposition taking
the value false.

Predicate Logic
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A quantifier modifies a predicate by describing

whether some or all elements of the domain satisfy

the predicate.

We now introduce two quantifiers (describing “parts or quantities” from

a domain), the universal quantification and the existential quantification.

Quantifiers
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Definition: 
A universal quantification is a quantifier meaning “given any” or “for all”
or “for every” . We use the following symbol:

Example: Here is a formal way to say that for all values that a
predicate variable x can take in a domain D, the predicate is true:

For example

The statement says that P(x) is true for all x in the domain.

Quantifiers
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Definition: 
An existential quantification is a quantifier meaning “there exists”, 
“there is at least one" or “for some”. We use the following symbol:

Example: Here is a formal way to say that for some values that a
predicate variable x can take in a domain D, the predicate is true:

For example,

The statement says that there exists an element x of the domain such that
P(x) is true; in other words, P(x) is true for some x in the domain.

Quantifiers
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Examples:

Write the following as English sentences. Say whether they are true or false. 

1. .

2. .

3.

Quantifiers
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There are lots of different ways to write quantified statements in
English. Translating back and forth between English statements and
predicate logic is a skill that takes practice.

Example: Using all cars as a domain, if

then the statement (∀x) (Q(x) → ¬ P(x)) could be translated very literally as

“For all cars x, if x is large, then x does not get good mileage.”

However, a more natural translation of the same statement is 

“All large cars get bad mileage.”
or

“There aren’t any large cars that get good mileage.”

If we wanted to say the opposite—that is, that there are some large cars 
that get good mileage—we could write the ……………………………………………….

Translation
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Example:

In the domain of all real numbers, let G(x, y) be the predicate “x > y.” 

The statement

says literally that ………………………………………………………………………………………

Translation
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Let’s interpret the negation rules in the context of an example.

o Not all CS students study hard = There is at least one CS student who does not 
study hard

Negation

Negation of a universal quantification becomes an existential quantification.

o It is not the case that some students in this class are from Sudan. = All
students in this class are not from Sudan.

Negation of an existential quantification becomes an universal quantification.
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Example 1: The universal negation rule says that the negation of “All people
are liars” is “There exists a person who is not a liar.” 

In symbols,

Example 2: Discussed what the negation of the statement “All large cars get bad 
mileage.”

Negation

Negation rules for predicate logic.
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Example 2: Discussed what the negation of the statement “All large cars get bad 
mileage.”

Solution:

Negation
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In the domain of integers, let P(x, y) be the predicate “x · y = 12.” Tell 
whether each of the following statements is true or false.

In the domain of all movies, let V(x) be the predicate “x is violent.” 
Write the following statements in the symbols of predicate logic.

In the domain of all books, consider the following predicates.

Translate the following statements in predicate logic into ordinary English.

Exercises 
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Translate each of the following sentences into symbolic logic.

1. If f is a polynomial and its degree is greater than 2, then       is not constant.

2.

3.

3. 

4. 

Negate the following sentences:

1. The number x is positive, but the number y is not positive.
2. For every prime number p there, is another prime number q with.

Exercises 



Chapter(1)

Logical Thinking

Lecture(5)

o Introduction

o Formal and informal proofs

66
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Introduction

o The truth value of some statement about the world is obvious and easy
to assign.

o The truth of other statements may not be obvious, but it may still
follow (be derived) from known facts about the world.

o To show the truth value of such a statement following from other
statements we need to provide a correct supporting argument a proof.
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Proof:
o Shows that the truth value of such a statement follows from (or can be 

inferred) from the truth value of other statements.

o Provides an argument supporting the validity of the statement.

Introduction
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Introduction

o It is time to prove some theorems. There are various methods of doing this;
we now examine the most straightforward approach, a technique called direct
proof.

o As we begin, it is important to keep in mind the meanings of three key terms:
Theorem and proof.

o A theorem is a mathematical statement that is true, and can be (and has
been) verified as true (statement that can be shown to be true).

o A proof of a theorem is a written verification that shows that the theorem
is definitely and unequivocally true (shows that the conclusion follows from
premises). A proof should be understandable and convincing to anyone who
has the requisite background and knowledge.

o A definition is an exact, unambiguous explanation of the meaning of a
mathematical word or phrase.

• Premises

• Axioms

• Results of other theorems
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Typically the theorem looks like this:

Example: Fermat’s little theorem

Introduction
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Formal proofs:

o Steps of the proofs follow logically from the set of premises, hypotheses
and axioms.

o Allow us to infer from new True statements from known True statements.

Formal proofs

Steps of the proof for statements in the propositional logic are argued using equivalence rules.
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Example:

Show (p ∧ q) ⟶ p is a tautology (page No 33)

Solution:

Proof: we must show (p ∧ q) ⟶ p ⇔ T

Formal proofs

Implication

DeMorgan

Commutative

Associative

Negation

Domination

Equivalences Rules page No 40
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Proving theorems in practice:

o The steps of the proofs are not expressed in any formal language as e.g.
propositional logic

o Steps are argued less formally using English, mathematical formulas and so on

o One must always watch the consistency of the argument made, logic and its
rules can often help us to decide the soundness of the argument if it is in
question.

o We use (informal) proofs to illustrate different methods of proving theorems

Informal proofs
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o The types of proofs we did in the previous were fairly mechanical.

o We started with the given and constructed a sequence of conclusions, each

justified by a deduction rule.

o We were able to write proofs this way because our mathematical system,

propositional logic, was fairly small.

o Most mathematical contexts are much more complicated; there are more

definitions, more axioms, and more complex statements to analyze.

o These more complicated situations do not easily lend themselves to the

kind of structured proof sequences of (propositional logic).

o In the next slide we will look at some of the ways proofs are done in

mathematics.

Methods proof
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o The structure of a proof sequence in propositional logic is
straightforward: in order to prove A ⇒ C, we prove a sequence of results.

o A direct proof in mathematics has the same logic, but we don’t usually 
write such proofs as lists of statement and reasons.

o p ⟶ q is proved by showing that if p is true then q follows

Direct proof
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Example:

Prove the following statement.

Proof

Direct proof
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Use the method of direct proof to prove the following statements.

1.

2.

3.

4. Recall

Exercises 

Recall that:
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The theory of sets is a language that is perfectly suited

to describing and explaining all types of mathematical

structures.

Introduction
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o We will explore different ways that the elements of a set can be related
to each other or to the elements of another set.

o These relationships can be described by mathematical objects such as
functions, relations, and graphs.

o Our goal is to develop the ability to see mathematical relationships
between objects, which in turn will enable us to apply tools from discrete
mathematics.

Introduction
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o Sets are used to group objects together. Objects in a set have similar
properties.

o For instance, all the students who are currently enrolled in your class
make up a set. Likewise, all the students currently taking a course in
discrete mathematics at any class make up a set.

o The language of sets is a means to study such collections in an organized
fashion.

o We now provide a definition of a set.

Introduction



82

The simplest way to describe a collection of related objects is as a set.

Definition of sets

o Think of the set S as a container where an object x is something that S contains.

o We write             to denote that x is contained in S. 

o We also say that “x is a member of S” “ x is an element of S” or more simply, “x 
is in S.” 



Definition: 

Definition of sets

It is common for sets to be denoted using uppercase letters. Lowercase letters are
usually used to denote elements of sets.

83

Example:



Membership and Containment

o We can describe examples of sets by listing the elements in the set or by
describing the properties that an element in the set has.

o To say that set S consists of the elements we write

o Suppose there is some property p that some of the elements of a set S have. We
can describe the set of all elements of S that have property p as

Definition of sets

This is sometimes called “set builder” notation, because it explains how to build a list of
all the elements of a set.

84
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Definition of sets

Example:

then the elements of B are ………………………………….

Example: describe a set is to use set builder notation.

• The set of all real numbers can be written as …………………………………………..

• The set of all odd positive integers less than 10 ………………………………………
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Definition of sets

Example: here are some further illustrations of set-builder notation.
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Definition of sets

Equal sets

Definition: 

Example:
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Definition of sets
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Definition of sets

Size of a set

Definition: 

Example:

Example:
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Definition of sets

Subsets

Definition: 

We see that if and only if the quantification

The null set is a subset of every set, that is
whenever A is set.
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Definition of sets

Example: be sure you understand why each of the following is true.
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Definition of sets

A Power Set is a set of all the subsets of a set and denoted by

Power Set

Example:
For the set {a,b,c}:
• These are subsets: {a}, {b} and {c}
• And these are subsets: {a,b}, {a,c} and {b,c}
• And {a,b,c} is also a subset of {a,b,c}
• And the empty set {} is a subset of {a,b,c}

And when we list all the subsets of S = {a,b,c} we get the Power Set of {a,b,c}:
P(S) = { {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }

How Many Subsets
Easy! If the original set has n members, then the Power Set will have 2n members.

Example:
in the {a,b,c} example above, there are three members (a,b and c).
So, the Power Set should have 23 = 8, which it does!
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Cartesian Product of Sets

The Cartesian product (or cross product) of A and B, denoted by A × B, is the 
set

A × B = {(a, b) | a ∈ A and b ∈ B}

Example:

If A = {2, 3, 4} and  B = {4, 5} 

a) A × B = {(2, 4),(2, 5),(3, 4),(3, 5),(4, 4),(4, 5)}
b) B ×A = {(4, 2),(4, 3),(4, 4),(5, 2),(5, 3),(5, 4)}

Definition of sets
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List the members of these sets.

Use set builder notation to give a description of each of these sets,

For each of these pairs of sets, determine whether the first is a 
subset of the second, the second is a subset of the first. 

Exercises 
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Determine whether each of these pairs of sets are equal.

List all the subsets of the following sets.

a.

b. 

Exercises 
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Introduction
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Set operations

A Venn diagram is a drawing, in which circular areas represent groups of items
usually sharing common properties.

Veen diagram

Venn Diagram: 
Union of 2 Sets

Venn Diagram:
Intersection of 2 Sets
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Set operations

Universal set 

It's a set that contains everything.

Well, not exactly everything. Everything that is relevant to our question.

Then our sets included integers. The universal set for that would be all the integers.

http://www.mathsisfun.com/whole-numbers.html
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Set operations

An element x belongs to the union of the sets A and B if and only if x
belongs to A or x belongs to B.

This tells us that

Union

Definition: 
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Set operations

Example:
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Set operations

An element x belongs to the intersection of the sets A and B if and
only if x belongs to A and x belongs to B.

This tells us that

Intersection

Definition: 
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Set operations

Example:
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Set operations

Example:

Disjoint

Definition: 
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Set operations

Difference 

Definition: 

An element x belongs to the difference of A and B if and only if x
belongs to A and x not belongs to B.

This tells us that
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Set operations

Example:
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Set operations

Complement of a set

Definition: 

An element belongs to if and only if

This tells us that

Remark: the complement of set A is sometimes denoted by
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Set operations

Example:
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Set operations
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Set operations

We use the notation

to denote the union of the sets

Union of a collection

Definition: 

Example:
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Set operations

We use the notation

to denote the union of the sets

Intersection of a collection

Definition: 

Example:
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Exercises
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Set identities

o The following table list the most important set identities. We will prove
several of these identities here using different methods.

o One way to show that two sets are equal is to show that each is a subset
of the other.

o Recall that to show one set is a subset of a second set, we can show that
if an element belongs to the first set, then it must also belong to the second
set.

o We generally use a direct proof to do this

Introduction
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Set identities

Table 1



Set identities

To prove statements about sets, of the form E1 = E2

(where Es are set expressions), here are three useful techniques:

• Prove E1 ⊆ E2 and E2 ⊆ E1 separately.

• Use logical equivalences.

• Use a membership table.

116
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Proof by subset

Theorem let A and B be sets. Then

Proof  we will prove that the two sets                                 are equal by showing 

That each set is a subset of the other. 

We will show that 

We do this by showing that If x is in              then it must also be in

Using the definition of negation of propositions, we have see that

Using the definition of the complement of a set, this implies that 

Consequently, by the definition of union, we see that     



118

Proof by use subset

Show that
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Show that

Proof by use logical equivalences

Proof
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Proof by use logical equivalences

Show that



121

o Set identities can also be proved using membership tables.

• To indicate that an element is in a set, a 1 is used; 
• To indicate that an element is not in a set, a 0 is used. 

Example:

Use a membership table to show that

Proof by use a membership table
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Proof by use a membership table

Proof
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Proof

o Set identities can also be proved using logical equivalences.

Example: Let A, B, and C be sets, Show that 

Set identities



124

Important Rules (inclusion-exclusion principle):

o If we have 2 disjoint sets A and B, the cardinality for their union is

o But if they are not disjoint then the previous relation becomes:

Example: The Masters of the KFU at a CS college accepts members who have 2400 SAT
scores or 4.0 GPAs in high school. Of the 11 members of the CS, 8 had 2400 SAT scores,
and 5 had 4.0 GPAs. How many members had both 2400 SAT scores and 4.0 GPAs?

Solution:

Set identities
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It is easy now to conclude the rule for 3 sets as: 

Set identities

comes from previous one
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Assume that A is a subset of some underling universal set U.

a) Prove the complementation law by showing that

Let A and B be sets. Prove the commutative laws in Table 1 by showing that 

Prove the De Morgan law in Table 1 by showing that if A and B are sets, then

a) by showing each side is a subset of the other side.

b) Using a membership table. 

Exercises
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Introduction

o The most direct way to express a relationship between elements of

two sets is to use ordered pairs made up of two related elements.

o For this reason, sets of ordered pairs are called binary relations.

o We introduce the basic terminology used to describe relations and

their types.
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Relations on a set

Binary relation

Definition: 

In other words, a binary relation from A to B is a set R of ordered pairs where 
the first element of each ordered pair comes from A and the second element 
comes from B. 

We use the notation a R b to denote that
Moreover, when (a, b) belongs to R, a is said to be related to b by R.

Example:  

Using arrows to represent ordered pairs from A to B
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Relations on a set

Relation on a set

Definition: 

In other words, a relation on a set A is a subset of

Example:  



131

Example: 

Relations on a set

Example: 
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Properties of relations

o There are several properties that are used to classify relations on a
set.

o We will introduce the most important of these here.
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Properties of relations
Reflexive

In some relations an element is always related to itself.

Definition: 

Remark: Using quantifiers we see that the relation R on the set A is reflexive if 

Example 1:  
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Properties of relations

Example 2:    Is the “divides” relation on the set of positive integers reflexive?
Justify your answer.

Example 3:    If we replace the set of  positive integers with the set of all 

integers is it reflexive? Justify your answer.  
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Properties of relations

Symmetric 

In some relations an element is related to a second element if and only if the
second element is also related to the first element.

Definition: 

Remark: Using quantifiers we see that the relation R on the set A is symmetric if

Similarly, the relation R on the set A is antisymmetric if 
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Properties of relations
Example 1:

Which of the relations are symmetric and which are antisymmetric?  
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Properties of relations

Example 2:    Is the “divides” relation on the set of positive integers   
symmetric? Is it antisymmetric?
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Properties of relations

Transitive

Definition: 

Remark: Using quantifiers we see that the relation R on the set A is transitive if we have 
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Properties of relations

Example:

Which of the relations are transitive?  
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Equivalence relations 

Definition: 

A relation R on a set S is an equivalence relation if it satisfies all three 
of the following properties.

In other words, an equivalence relation is a relation that is reflexive, 

symmetry, and transitive. 
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Equivalence relations 

Example:

Solution:
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Exercises



Chapter(3)

Function

Lecture(10)

o Introduction 

o Definition of function

o Type of functions

143



144

Introduction

In many instances we assign to each element of a set a particular
element of a second set (which may be the same as the first).

For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A, B, C, D, F}. And
suppose that the grades are A for Amal, C for Camila, B for Bashayer,
A for Ali, and F for Fadhal. This assignment of grades is illustrated as
following

• This assignment is an example of a function and are just special kinds of relations.
• Function is extremely important in mathematics and computer science (for example, are

used in the definition of such discrete structures as sequences and string, are used to
represent how long it takes a computer to solve problems of a given size).

Amal

Camila

Bashayer

Ali

Fadhal
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Definition of function

Definition: 

Remark: Functions are sometimes also called mappings or transformations.

Definition:
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Example

Defines as function 

Definition of function
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Definition of function

Definition: 
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Example:

Suppose that each student in a discrete mathematics class is assigned a letter
grade from the set {A, B, C, D, F}. And suppose that the grades are A for Amal,
C for Camila, B for Bashayer, A for Ali, and F for Fadhal. What are the domain,
codomain, and range of the function that assigns grades to students?

Solution:

Let G be the function that assigns a grade to student in our discrete
mathematics class. Note that G (Amal) = A, for instance.

The domain of G is the set {Amal, Camila, Bashayer, Ali, Fadhal}.

The codomain is the set {A, B, C, D, F}.

The range of G is the set {A, B, C, F}, because each grade except D is assigned
to some student.

Definition of function
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Example:

Let R be the relation with ordered pairs (Amal, 22), (Camila, 24),
(Bashayer, 21), (Ali, 22), and (Fadhal, 24). Here each pair consists of a
graduate student and this student’s age. Specify a function determined by this
relation.

Solution:

Example:

Definition of function
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Definition of function

Definition: 

Definition: 
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Definition of function

Example:

Solution: from the definition of the sum and product of function, it

follows that

and
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One-to-One function

Some functions never assign the same value to two different domain elements.
These functions are said to be one-to-one.

Definition: 

Type of functions
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Type of functions

Example 11:

Example:

Solution:

Example:

Solution:



154

Onto function

Definition: 

Example:

Solution:

Type of functions

Because all three elements of the codomain are images 
of elements in the domain, we see that f is onto.
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Type of functions

Example:

Solution:

Example:

Examples of different types of correspondences
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Bijective 

Definition: 

Example:

Type of functions
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Exercises
1.

2.

3.

4.

5. Determine whether each of these functions from {a, b, c, d} to itself is one-to-one
and which functions are onto?
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Exercises

6.

7.
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Identity function

Definition:  Given a set A, the identity function on A is the function

Type of functions
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Inverse function

Definition: 

Type of functions
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Type of functions

A bijective is called invertible because we can define an inverse of this 
function. 

A function is not invertible if it is not bijective, because the inverse 
of such a function does not exist.
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Type of functions

Example: 
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Type of functions

Example:

Example: 
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Type of functions

Example:

Solution:
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Composition of function

Definition: 

Type of functions



166

Type of functions

Example:

Example: 
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Recurrence relation

This is a recursive definition because P is defined in terms of itself: P occurs in the formula that defines P

Equation 1



168

Recurrence relation

Example: Use Equation 1 to compute P(5)

Solution:
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Exercises

1.

2.

3.
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Exercises

4.

5.

6. What is the inverse of the function f(x) = 5x -4
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We now examine an alternative to direct proof called
contrapositive proof. Like direct proof, the technique of
contrapositive proof is used to prove conditional statements of

the form “If P, then Q.”

Introduction
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To understand how contrapositive proof works, imagine that you need to prove a
proposition of the following form.

Page 24 we

Contrapositive Proof
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Contrapositive Proof
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Contrapositive Proof

Example:

Solution:
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Counterexamples
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Counterexamples
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Counterexamples

Example:

Solution:
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Proof by contradiction
The basic idea is to assume that the statement we want to prove is
false, and then show that this assumption leads to nonsense. We are
then led to conclude that we were wrong to assume the statement was
false, so the statement must be true.
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Proof by contradiction

Example:

Solution
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Exercises

1. Show that the statement “Every positive integer is the sumo  
of the squares of two integers” is false.

2.

By contrapositive

By counterexample 

3.



Working hard will never fail you in anything
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o Sequences, indexed classes of sets.

o Recursively defined functions.

183

• Factorial function

• Fibonacci sequence

• Ackermann function

Chapter(4)

Recurrence Relations
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What animal would come 
next in this sequence?



Here is a sequence of numbers.

What number is going 
to come next in this 

sequence?

0  2  4  6  8  10  12  14  16

185



o Sequences represent ordered lists of elements.

o A sequence is defined as a function from a subset of 
N to a set S. We use the notation an to denote the 
image of the integer n. We call an a term of the 
sequence.

Example:

subset of N:        1   2   3   4   5    …

S:                        2   4   6   8   10  …

Sequences

186

a1 a2 a3 a4 a5



o A succession of numbers

– Listed according to a given prescription or rule

– Typically written as   a1, a2, … an

– Often shortened to { an }

Example

– 1, 3, 5, 7, 9, … 
– A sequence of odd numbers

Sequences

187

o A Sequence is a set of things (usually numbers) that are in order in 
which repetitions are allowed.

Definition
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Recursively defined functions

o Recursion is defined as the method of defining the functions where
the distinct function is practical within its own definition. A
recursively function has two parts

1. Definition of the smallest argument (f(0) or f(1)),

2. Definition of f(n), given f(n-1), f n-2).

o The recursion process is also used to define a process of repeating
objects in the similar way.
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Recursively defined functions

Example:

An example of recursively defined function is

f(0) = 5

f(n) = f(n-1) + 2 ,

The values of the function are calculated as f (0) = 5,

f(1) = f(1-1) +2  =  f(0) + 2

= 5 + 2

= 7

f(2) = f(1) + 2

= 7 + 2

= 9
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o The product of the positive integers from 1 to n is called

“n factorial” an usually denoted by n!; that is

n! = 5.4.3.2.1… n(n-1)(n-2)

o It is also convenient to define 0! = 1, so that the function is
defined for all nonnegative integers.

o Thus we have

0! = 1, 1 != 1, 2! = 2.1, 3! = 3.2.1 = 6,

4! = 4.3.2.1 = 24, 5! = 5.4.3.2.1 = 120 and so on

Recursively defined functions

Factorial function
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o Observe that:

5! = 5.4! = 5.24 = 120 and 6! = 6.5! = 6.120 = 720

o This is true for every positive integer n; that is, n! = n.(n-1)!

o Accordingly, the factorial function may also be defined as 
follows:

Definition: (Factorial function):

a) n! = 1 if n = 0.
b) n! = n . (n-1)!  if n > 0.

Recursively defined functions
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o However:

1. The value of n! is explicitly given when n=0 (thus 0 is a base value).

2. The value of n! for arbitrary n is defined in terms of a smaller 
value of n which is closer to the base value 0.

o Accordingly, the definition is not circular, or, in other words, the   
function is well-defined.

Example:

Let us calculate 4! Using the recursive definitions. 

Solution: 

This calculation require the following nine steps:   

Recursively defined functions
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1) 4! = 4 . 3!

2) 3! = 3 . 2!

3) 2! = 2 . 1!

4) 1!=1 . 0!

5) 0! = 1

6) 1!=1 . 1= 1

7) 2! = 2 . 1= 2

8) 3! = 3 . 2 = 6

9) 4! =4 . 6 = 24

Recursively defined functions
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o Let P be a procedure or recursive formula which is used to evaluate
f(x) where f is a recursive function and x is the input.

o We associate a level number with each execution of P as follows:
1. The original execution of P is assigned level 1; and

2. Each time P is executed because of a recursive call, its level is
one more than the level of the execution that made the
recursive call.

o The depth of the recursion in evaluating f(x) refers to the maximum
level number of P during its execution.

Recursively defined functions

Level numbers
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o Consider, for example, the evaluation of 4! Factorial example,
which uses the recursive formula n!=n(n-1)!:

o Step 1 belongs to level 1 since it is the first execution of the
formula. Thus:
– Step 2 belongs to level 2;
– Step 3 to level 3,………Step 5 to level 5.

o In the other hand, step 6 belongs to level 4 since it is the result
of a return from level 5. In other words step 6 and step 4 belong
to the same level of execution. Similarly,

o Step 7 belongs to level 3; Step 8 to level 2; and step 9 to level 1.
o Accordingly, in evaluation 4!, the depth of the recursion is 5.

Recursively defined functions
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The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

o The next number is found by adding up the two numbers before it.

• The 2 is found by adding the two numbers before it (1+1)

• Similarly, the 3 is found by adding the two numbers before it (1+2),

• And the 5 is (2+3),

and so on!

Example: the next number in the sequence above is 21+34 = 55

It is that simple!

Recursively defined functions

Fibonacci sequence
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Definition: (Fibonacci sequence): 

• If n = 0 or n = 1, then Fn = n.
• If n > 1, then Fn = Fn-2 + Fn-1.

o This another example of a recursive definition, since the 
definition refers to itself when it uses Fn-2 and Fn-1. However:

• The base values are 0 and 1.
• The value of Fn is defined in terms of smaller values of n 

which are closer to the base values.

o Accordingly, this function is well-defined.

Recursively defined functions
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Example: 

Let a and b be positive integers, and suppose Q is defined recursively 
as follows:

(a) Find: (i) Q(2,5), (ii) Q(12,5)

(b) What does this function Q do? 

(c) Find the quotient for Q(5861,7) when a is divided by b.

Solution: 

(a) (i) Q(2,5)   = 0 since 2<5.

(ii) Q(12,5) = Q(7,5)+1

= [Q(2,5)+1]+1=Q(2,5)+2

= 0 + 2 = 2.









abifbbaQ

baif
baQ

1),(

0
),(

Recursively defined functions
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(b) Each time b is subtracted from a, the value of Q is increased by 1.

(c) Hence Q(a, b), finds the quotient when a is divided by b. Thus
Q(5861, 7) = 837.

Recursively defined functions
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o The Ackermann function, named after Wilhelm Achermann, is one
of the simplest and earliest discovered examples of a total
computable function that is not primitive recursive (a function
that can be implemented using only do-loops is called primitive
recursive.)

o Ackermann's function is a computable function that grows faster
than any primitive recursive function.

o So it is a function with two arguments, each of which can be
assigned any nonnegative integer m and n as follows:

Recursively defined functions

Ackermann function
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For example, we can fully evaluate in the following way:

Recursively defined functions
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Example: 

Use the definition of the Ackermann function to find A(1,3).

Solution: 

We have the following 15 steps in the next slide:

Recursively defined functions
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1) A(1,3)=A(0,A(1,2))

2) A(1,2)=A(0,A(1,1))

3) A(1,1)=A(0,A(1,0)

4) A(1,0)=A(0,1)

5) A(0,1)=1+1=2

6) A(1,0)=2

7) A(1,1)=A(0,2)

8) A(0,2)=2+1=3

9) A(1,1)=3

10) A(1,2)=A(0,3)

11) A(0,3)=3+1=4

12) A(1,2)=4

13) A(1,3)=A(0,4)

14) A(0,4)=4+1=5

15) A(1,3)=5

Recursively defined functions
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o Recurrence Relations

o Modeling with recurrence relations
- finding compound interest
- counting rabbits on an island
- Tower of Hanoi Puzzle
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Recurrence Relations

o Previously, we discussed recursively defined functions such as

(a) Factorial function

(b) Fibonacci sequence

(c) Ackermann function. 

o Here we discuss certain kinds of recursively defined sequences 
{an}  and their solution. We note that a sequence is simply a 
function whose domain is 

N = {1, 2, 3, …}

o Let us begin with some examples.
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o Consider the following instructions for generating a sequence:
1. Start with 5.
2. Given any term, add 3 to get the next term.

If we list the terms of the sequence, we obtain

5, 8, 11, 14, 17, …                          (1.1) 

o The first term is 5 because of instruction 1. The second term is 8 because of 
instruction 2 says to add 3 to 5 to get the next term, 8. The third term is 11 
because instruction 2 says to add 3 to 8 to get next term 11. By following 
instruction 1 and 2, we can compute any term in the sequence.

o If we denote the sequence (1.1) as a1, a2, …, we may rephrase instruction 1 

as 

a1 = 5 (1.2)  
and we may rephrase instruction 2 as 

a2 = an-1 + 3.   n≥ 2.                           (1.3) 
o Taking n = 2 in (1.3),  we obtain

a2  =  a1  + 3

o By (1.2), a1 = 5; thus

a2  = 5 + 3 = 8 

o Equation (1.3) furnishes an example of a Recurrence Relation.

Recurrence Relations
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Recurrence Relations

o Many counting problems can be solved by finding relationships just like we

did above.

o Such relationships are called recurrence relations, and are going to be the

focus of the next few lectures.

o We are going to study a variety of counting problems that can be modeled

using recurrence relations.

o We will develop methods here for finding explicit formulae for the terms of

sequences that satisfy certain types of recurrence relations.

o Recurrence Relations Recall that a recursive definition of a sequence

specifies one or more initial terms and a rule or two for determining

subsequent terms for those that follow.

o Recursive definitions can be used to solve counting problems, and that can

often be a good thing, because finding a closed formula for a recurrence

relation and then using it to explicitly and quickly calculate a term for a

particular integer is much quicker than calculating the term all the way up

from the initial term—the base case, in a sense.
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Recurrence Relations

Definition: A recurrence relation for the sequence {an} is an equation that
expresses an in terms of one or more of the previous terms of the sequence,
namely, a0, a1,……,an-1, for all integers n with n ≥ n0, where n0 is a nonnegative
integer. A sequence is called a solution of a recurrence relation if its terms
satisfy the recurrence relation.

Examples:
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Recurrence Relations

Definition

Example:
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Recurrence Relations

Example: 

1. What is are the first terms of a sequence defined by the f recurrence relation

an = an-1 + (2n - 1) ; a1 = 1?

- a1  = 1

- a2  = 
- a3 = 
- a4 =
- an =                                             

2. What recurrence relation defines: 
1, 3, 9, 27, 81, …  or         for n = 0, 1, 2, 3, …?

- a0 = 
- an = 

n3

3. Consider the following sequence which begins with the number 3 and for

which each of the following terms is found by multiplying the previous term by

2: 3, 6, 12, 24, 48, … Find the defined recursively.
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Recurrence Relations

Example: 



212

Modeling with recurrence relations 

We can use recurrence relations to model a wide variety of problems, 

such as:

(a) finding compound interest

(b) counting rabbits on an island

(c) determining the number of moves in the tower of Hanoi Puzzle
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Modeling with recurrence relations 

Finding compound interest

Example:

Someone deposits $10,000 in a savings account at a bank yielding 5%
per year with interest compounded annually. How much money will be in
the account after 30 years?

Solution:

Let Pn denote the amount in the account after n years. Because the
amount in the account after n year equals the amount in the account
after n-1 years plus interest for nth year.

How can we determine Pn on the basis of Pn-1?
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Modeling with recurrence relations 

o We can derive the following recurrence relation:
Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1.
The initial condition is P0 = 10,000.

Then we have:

P1 = 1.05P0

P2 = 1.05P1 = (1.05)2P0

P3 = 1.05P2 = (1.05)3P0

…
Pn = 1.05Pn-1 = (1.05)nP0

o We now have a formula to calculate Pn for any natural number n and can    
avoid the iteration.

o Let us use this formula to find P30 under the initial condition P0 = 10,000:

P30 = (1.05)30.10,000 = 43,219.42

After 30 years, the account contains $43,219.42.
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Modeling with recurrence relations 

Counting rabbits on an island

o Let's look first at the Rabbit Puzzle that Fibonacci wrote about and then at  

two adaptations of it to make it more realistic. This introduces you to the

Fibonacci Number series and the simple definition of the whole never-ending

series.

o The original problem that Fibonacci investigated (in the year 1202) was about 

how fast rabbits could breed in ideal circumstances.

o Suppose a newly-born pair of rabbits, one male, one female, are put in a field. 

Rabbits are able to mate at the age of one month so that at the end of its 

second month a female can produce another pair of rabbits. Suppose that our 

rabbits never die and that the female always produces one new pair (one 

male, one female) every month from the second month on. The puzzle that 

Fibonacci posed was...

How many pairs will there be in one year?
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Modeling with recurrence relations 

 At the end of the first month, they mate, but there is still one only 1 pair.

 At the end of the second month the female produces a new pair, so now there are 2 pairs of rabbits in the  

field.

 At the end of the third month, the original female produces a second pair, making 3 pairs in all in the field.

 At the end of the fourth month, the original female has produced yet another new pair, the female born 

two months ago produces her first pair also, making 5 pairs.

Consequently, the sequence {an}  satisfies the recurrence relation                                         for n > 3 with initial 

conditions                and 
1nfnf 2 nf

11 f 12 f
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Modeling with recurrence relations 

o Let {an} the number of pairs of rabbits after n months.

o At the end of the first month, the number of pairs of rabbits on the island is 

f1 =1

o Since this pair does not breed during the second month, 

f2=1 also

o To find the number of pairs after n months, add the number on the island the 
previous month, fn-1, and the number of newborn pairs, which equals fn-2, since 
each newborn pair comes from a pair at least 2 months old.

Consequently, the sequence {an} satisfies the recurrence relation

fn = fn-1 + fn-2 for n > = 3 with initial conditions f1 =1 and f2=1. 
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Modeling with recurrence relations 

Determining the number of moves in the tower of Hanoi Puzzle.

The Tower of Hanoi (also called the Tower of Brahma or Lucas'
Tower, and sometimes pluralized) is a mathematical game or puzzle. It
consists of three rods, and a number of disks of different sizes which
can slide onto any rod. The puzzle starts with the disks in a neat stack
in ascending order of size on one rod, the smallest at the top, thus
making a conical shape.
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Modeling with recurrence relations 

o The objective of the puzzle is to move the entire stack to 

another rod, obeying the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and 

placing it on top of another stack i.e. a disk can only be moved if it is the  

uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.
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Modeling with recurrence relations 

How many moves will it take to transfer n disks from the left post to 

the right post?

Let's look for a pattern in the number of steps it takes to move just one,
two, or three disks. We'll number the disks starting with disk 1 on the
bottom.

1 disk: 1 move

Move 1: move disk 1 to post C
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Modeling with recurrence relations 

2 disks: 3 moves

Move 1: move disk 2 to post B
Move 2: move disk 1 to post C
Move 3: move disk 2 to post C
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Modeling with recurrence relations 

3 disks: 7 moves

Move 1: move disk 3 to post C
Move 2: move disk 2 to post B
Move 3: move disk 3 to post B
Move 4: move disk 1 to post C
Move 5: move disk 3 to post A
Move 6: move disk 2 to post C
Move 7: move disk 3 to post C

Can you work through the moves for transferring 4 disks? It should take you 15
moves. How about 5 disks? 6 disks? Do you see a pattern?
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Modeling with recurrence relations 
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Can you work through the moves for transferring 4 disks? It

should take you 15 moves. How about 5 disks? 6 disks? Do you

see a pattern?
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A. Recursive pattern

Modeling with recurrence relations 

• From the moves necessary to transfer one, two, and three disks, we can find a recursive
pattern - a pattern that uses information from one step to find the next step - for moving
n disks from post A to post C:

1.First, transfer n-1 disks from post A to post B. The number of moves will be the same
as those needed to transfer n-1 disks from post A to post C. Call this number M moves.
[As you can see above, with three disks it takes 3 moves to transfer two disks (n-1)
from post A to post C.]
2.Next, transfer disk 1 to post C [1 move].
3.Finally, transfer the remaining n-1 disks from post B to post C. [Again, the number of
moves will be the same as those needed to transfer n-1 disks from post A to post C, or
M moves.]

• Therefore the number of moves needed to transfer n disks from post A to post C is
2M+1, where M is the number of moves needed to transfer n-1 disks from post A to post C.
Unfortunately, if we want to know how many moves it will take to transfer 100 disks from
post A to post B, we will first have to find the moves it takes to transfer 99 disks, 98
disks, and so on. Therefore the recursive pattern will not be much help in finding the time
it would take to transfer all the disks.

• However, the recursive pattern can help us generate more numbers to find an explicit (non-
recursive) pattern. Here's how to find the number of moves needed to transfer larger
numbers of disks from post A to post C, remembering that M = the number of moves
needed to transfer n-1 disks from post A to post C:

1.for 1 disk it takes 1 move to transfer 1 disk from post A to post C;
2.for 2 disks, it will take 3 moves: 2M + 1 = 2(1) + 1 = 3
3.for 3 disks, it will take 7 moves: 2M + 1 = 2(3) + 1 = 7
4.for 4 disks, it will take 15 moves: 2M + 1 = 2(7) + 1 = 15
5.for 5 disks, it will take 31 moves: 2M + 1 = 2(15) + 1 = 31
6.for 6 disks... ?
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B. Explicit Pattern

Modeling with recurrence relations 

Number of Disks Number of Moves
1 1
2 3
3 7
4 15
5 31

Powers of two help reveal the pattern:

Number of Disks (n) Number of Moves

1 2^1 - 1 = 2 - 1 = 1
2 2^2 - 1 = 4 - 1 = 3
3 2^3 - 1 = 8 - 1 = 7
4 2^4 - 1 = 16 - 1 = 15
5 2^5 - 1 = 32 - 1 = 31

So the formula for finding the number of steps it takes to transfer n
disks from post A to post B is: 2^n - 1.
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Modeling with recurrence relations 

Example: Let {Hn} denote the number of moves needed to solve the Tower of 
Hanoi problem with n disks. Set up a recurrence relation for the sequence {Hn}.

Solution:
o The initial condition is H1 = 1, since one disk can be transferred from A to C, 

according to the rules of the puzzle, in one move.

o We can use an iterative approach to solve this recurrence relation. Note that

o For                 see the link for more details  (https://www.mathsisfun.com/games/towerofhanoi.html)
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Exercises
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Exercises
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o Solve Recurrence Relations

- Solving linear combination of the previous k terms.

- Solving linear homogenous recurrence relations with

constant coefficients. 

Chapter(4)

Recurrence Relations
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Solving Recurrence Relations 

o In general, we would prefer to have an explicit  formula to compute the value 

of an rather than conducting n iterations.

o For one class of recurrence relations, we can obtain such formulas in a 

systematic way.

o Those are the recurrence relations that express the terms of a sequence as 

linear combinations of previous terms.
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How to Solve Recurrence Relations

- Solving linear combination of the previous k terms.

1. an = 2an-1 + 5an-2

2. an = (an-1)2 + 3an-2

o Focus on the equations above. The first one is an example of linear recurrence 

relation. The second example is not linear, so what is mean to be linear?

3.   f(x)  = 3x - 1

o What  made the function in the equation 3 linear with that the exponent was 1

Solving Recurrence Relations 
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- Solving linear homogenous recurrence relations with   
constant coefficients

o Homogenous describes things that are all of the similar kind. If you have ahomogenous group of
friends, you probably wear the same outfits, talk the same way, live in the same kind of
neighborhood, and like the same music. Thus y′′= xy is homogeneous; y′′= xy + x +1 is not,
since x+1 doesn't "involve" y.

1. an = an-1 + 3n

2. an = 10 an-1

o The first example is not homogenous. The second example is homogenous, so what it mean for 
a recurrence relation to be homogenous?

Solving Recurrence Relations 
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Solving Recurrence Relations 

Definition: A linear homogeneous recurrence relation of degree k 

with constant coefficients is a recurrence relation of the form:

an = c1an-1 + c2an-2 + … + ckan-k,
Where c1, c2, …, ck are real numbers, and ck not equal 0
A sequence satisfying such a recurrence relation is uniquely determined by 
the recurrence relation and the k initial conditions

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.
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Solving Recurrence Relations 

2
a

Examples:

o The recurrence relation Pn = (1.05)Pn-1

is a linear homogeneous recurrence relation of degree one.

o The recurrence relation fn = fn-1 + fn-2

is a linear homogeneous recurrence relation of degree two.

o The recurrence relation an = an-5

is a linear homogeneous recurrence relation of degree five.
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Solving Recurrence Relations 

Examples

Determine if the following recurrence relations are linear 
homogeneous recurrence relations with constant coefficients.

 Pn = (1.11)Pn-1

a linear homogeneous recurrence relation of degree one

 an = an-1 +     n-2

not linear

 fn = fn-1 + fn-2

a linear homogeneous recurrence relation of degree two
 Hn = 2Hn-1+1

not homogeneous

 an = an-6

a linear homogeneous recurrence relation of degree six

 Bn = nBn-1

does not have constant coefficient

2
a
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Solving Recurrence Relations 

o Basically, when solving such recurrence relations, we try to 

find solutions of the form an = rn, where r is a constant.

an = rn is a solution of the recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k if and only if

rn = c1r
n-1 + c2r

n-2 + … + ckrn-k           (1).

o Divide equation (1) by rn-k and subtract the right-hand side 

from the left:

rk - c1r
k-1 - c2r

k-2 - … - ck-1r - ck = 0       (2).

o Equation (2) is called the characteristic equation of the 

recurrence relation.

o The solutions of this equation (2) are called the characteristic 
roots of the recurrence relation.
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Solving linear homogenous recurrence relations 

with constant coefficients 

Theorem 1:

Let c1 and c2 be real numbers. Suppose                            has two
distinct roots r1 and r2. Then the sequence {an} is a solution of the
recurrence relation an = c1 an-1 + c2 an-2 if and only if 

for n = 0, 1, 2, … where  and are constants

021

2  crcr

nn

n rra 2211   1 2

Let us consider linear homogeneous recurrence relations of degree two.
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Solving linear homogenous recurrence relations 

with constant coefficients 

Example:

What is the solution of the recurrence relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ?

Solution: The characteristic equation of the recurrence relation is r2 – r – 2 = 0.

Its roots are r = 2 and r = -1.

Hence, the sequence {an} is a solution to the recurrence relation if and only if:

for some constants         and      .

Given the equation                                                      and the initial conditions a0 = 2 

and a1 = 7, it follows that   

Solving these two equations ((1) and (2)) gives us
= 3 and       = -1.

Therefore, the solution to the recurrence relation and initial conditions is the 

sequence {an} with

nn

na )1(2 21   1 2
nn

na )1(2 21  

210 2  a

)1.(2.7 211  a

1 2

.)1(2.3 nn

na 

(1)

(2)
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Solving linear homogenous recurrence relations 

with constant coefficients 

Example: 

Give an explicit formula for the Fibonacci numbers.

Solution: The Fibonacci numbers satisfy the recurrence relation 

fn = fn-1 + fn-2 with initial conditions f0 = 0 and f1 = 1.

The characteristic equation is r2 – r – 1 = 0.

Its roots are

Remark:


The solution(s) to a quadratic equation can be calculated using the Quadratic Formula:

2

51
,

2

51
21





 rr
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Solving linear homogenous recurrence relations 

with constant coefficients 

Therefore, the Fibonacci numbers are given by

for some constants        and .

We can determine values for these constants so that

the sequence meets the conditions f0 = 0 and f1 = 1: 

nn

nf 

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

 





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Solving linear homogenous recurrence relations 

with constant coefficients 

The unique solution to this system of two equations and 

two variables is

So finally we obtained an explicit formula for the 

Fibonacci numbers: 

5
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Solving linear homogenous recurrence relations 

with constant coefficients 

But what happens if the characteristic equation has 

only one root?

o How can we then match our equation with the initial conditions a0 and a1 ?

Theorem 2:

Let c1 and c2 be real numbers with c2≠0. Suppose 
has only one root r0. A sequence {an} is a solution of the recurrence
relation an = c1 an-1+ c2 an-2 if and only if 
for n = 0, 1, 2, …where and  are constants 

nn

n nrra 0201  

021

2  crcr
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Solving linear homogenous recurrence relations 

with constant coefficients 

Example: 

What is the solution of the recurrence relation an = 6an-1 – 9an-2

with a0 = 1 and a1 = 6?

Solution: 

The only root of   r2 – 6r + 9 = 0 is r0 = 3.

Hence, the solution to the recurrence relation is

for some constants      and     .

To match the initial condition, we need

Solving these equations yields      = 1 and       = 1.

Consequently, the overall solution is given by

nn

n na 33 21  
1 2

10 1 a

3.3.6 211  a

1 2

.33 nn

n na 



242

Solving linear homogenous recurrence relations 

with constant coefficients 

The follows theorem state the general result about the solution of linear

homogenous recurrence relations with constant coefficients, where the

degree may be greater than two, under the assumption that the

characteristic equation has distinct roots.

Theorem 3:

Let c1, c2 , …, ck be real numbers. Suppose that the characteristic 

equation                                             has k distinct roots r1, r2, …, rk.

Then the sequence {an} is a solution of the recurrence relation 

an=c1 an-1+c2 an-2 + … ck an-k if and only if 

for n = 0, 1, 2,… where                         are constants.

0...1
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Solving linear homogenous recurrence relations 

with constant coefficients 
Example: 

Find the solution to the recurrence relation an = 6an-1-11an-2+6an-3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

Solution:
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Solving linear homogenous recurrence relations 

with constant coefficients 

Factor:

There is the Rational Roots Theorem.

If a polynomial has a rational  root, then it is of the form n/d where n is a factor of the constant 

term and d is a factor of the leading coefficient.

The constant term is 6 with factors:±1,±2,±3,±6

The leading coefficient is 1 with factors:±1

Hence, the possible roots are (as Galactus pointed out) are:±1,±2,±3,±6

Then there is the Factor Theorem.

If f(a)=0, then (x−a) is a factor of f(x).

Get it?

Plug in a number for x ... If it comes out to zero, we've found a factor.

Try x=1:f(1)=13−6⋅12+11⋅1−6=0. . . Bingo!

So, we know that (x−1) is a factor.

Use long (or synthetic) division to get: x3−6x2+11x−6=(x−1)(x2−5x+6)

Then we can factor the quadratic factor: (x−1)(x−2)(x−3) 

6116)( 23  xxxxf
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Solving linear homogenous recurrence relations 

with constant coefficients 

o The follows theorem state the most general result about linear
homogenous recurrence relations with constant coefficients,
allowing the characteristic equation to have multiple roots.

o The key point is that for each root r of the characteristic equation,
the general solution has a summand of the form where P(n) is
a polynomial of degree m-1, with m the multiplicity of this root.

n
rnP )(
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Solving linear homogenous recurrence relations 

with constant coefficients 

Theorem 4:

Let c1,c2 ,…, ck be real numbers. Suppose that the characteristic 
Equation                                      has t distinct roots r1, r2,…, rt

With multiplicities m1,m2,…, mt, respectively, so that mi ≥ 1 for 
I = 1, 2,…, t and m1 + m2 +…+ mt = k. Then the sequence {an} is a solution 
of the recurrence relation

an    = c1 an-1 + c2 an-2 +…+ ck an-k

if and only if 

for n = 0, 1, 2,… where       are constants for 1 ≤ i ≤ t and 0 ≤ j  ≤ mi - 1.
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Solving linear homogenous recurrence relations 

with constant coefficients 

Example: 

Suppose that the roots of the characteristic equation of a linear

homogeneous recurrence relation are 2,2,2,5,5, and 9 (that is, there

are three roots, the root 2 with multiplicity three, the root 5 with

multiplicity two, and the root 9 with multiplicity one). What is the

form of the general solution?

Solution:

By Theorem 4, the general form of the solution is 

nnn
nnn 95)(2)( 0,31,20,2

2

2,11,10,1  
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Find the solution to the recurrence relation an = -3an-1 - 3an-2 - an-3 with 

initial conditions a0 =1, a1 = -2, and a2 = -1.

Yeah! Its finished.
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o Solve Recurrence Relations

- Generating Functions.

- The algebra of generating function.

- Useful facts about power series.
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o Basically, generating functions are a tool to solve a wide variety of 

counting problems and recurrence relations, find moments of 
probability distributions and much more.

o The idea is to associate with any sequence {an} a function defined 
as follows:

Generating Functions 

The generating function for the sequence a0, a1, …, ak, … of real
numbers is the infinite series 

0 1

0

( ) ... ...k k

k k

k

G x a a x a x a x




     

Generating Functions represents sequence where each term of a sequence is 
expressed as a coefficient of a variable x in a formal power series.
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Generating Functions 

Examples: What are the generating functions for the sequences {ak}:

1.   a) ak = 2           b) ak = 3k            c) ak = k+1                d) 

Solutions: 

k

ka 2
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Generating Functions 

Solutions: 

When ak = 2, generating function,

When ak = 3k, generating function,

When ak = k+1, generating function,  

When            , generating function,
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xxxxxG
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Example: 

Find the generating function for the sequence given recursively by:

(a) with

(b)                                             with 

Solution:

Generating Functions 

21 42   nnn aaa 31 10  aanda

32 21   nnn aaa 22 10  aanda



254

Solutions:

(a) 1, 3, 10, 32, …
The generating function for this sequence is 

(b) 2, 2, 9, 16, 37, …
The generating function for this sequence is 

Generating Functions 

...321031 32  xxx

...3716922 432  xxxx
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Example: 

Let m be a positive integer. Let ak = C(m,k), for k = 0,1,2,…, m. 

What is the generating function for the sequence a0, a1,…,am?

Solution:

Generating Functions 
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Solution:

The generating function for this sequence is 

Generating Functions 

.),(...)2,()1,()0,()( 2 m
xmmCxmCxmCmCxG 
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Generating Functions 

Examples: 

Find the generating functions for the following sequences. In each case, try to 

simplify the answer. 

(a) 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, …  (b) 1, 1, 1, 1, 1, … (c) 1, 3, 3, 0, 0, 0, 0, … 

(d)

Solutions: 

,...0,0,0,0,,...,,, 2015

2015

2015

2

2015

1

2015

0 CCCC
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Generating Functions 

Solutions: 

(a) The generating function is 

5432

765432

1

...00111111)(

xxxxx

xxxxxxxxG





(b) The generating function is

...1)( 432  xxxxxG

(c) The generating function is
2331)( xxxG 

(d) The generating function is

20152015

2015

20142015

2014

22015

2

2015

1

2015

0 ...)( xCxCxCxCCxG 
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Algebra on G(x)

Manipulating formal power series:

o let                     be a sequence of real numbers. We call the (possibly infinite) sum

a formal power series.

o The sum is said to be formal  because we cannot collapse any of the terms. So, if 

then it must be that

o There is a single power series equal to 1:

o There is a single power series equal to 0:

,...,, 210 aaa

......2

210  k

k xaxaxaa

,2

210

2

210 xbxbbxaxaa  ., 221100 baandbaba 

...,0011 2  xx

...,0000 2  xx
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Algebra on G(x)

Sum and product 

o A formal power series is a mathematical object which behaves essentially like 

an infinite polynomial.

o If we have two generating functions F(x) and G(x), we define the sum 

and product as follows theorem:

 

0 0

0

0 0

( ) ( )

( ) ( )

( ) ( )

k k

k k

k k

k

k k

k

k
k

j k j

k j

F x a x G x b x

F x G x a b x

F x G x a b x

 

 








 

 

  

 
  

 

 



 

Match all terms with

equal powers in x.

 2

021120011000 )()( xbababaxbababa

 ))(( 2

210

2

210 xbxbbxaxaa
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Algebra on G(x)

Example: 

If

Find   (a) 

(b)

Solution: 








963

32

1)(

,1)(

xxxxg

xxxxf

))()(( xgxf 

)()( xgxf

 2

021120011000 )()( xbababaxbababa
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Algebra on G(x)

Solution: 

Now

and

...1)( 32  xxxxf

...00001)( 65432  xxxxxxxg

...22)()( 32  xxxxgxf

...21)()( 32  xxxxgxf
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Algebra on G(x)

o The generating functions can be added and multiplied just like polynomials.

o Generating functions obey the same algebraic laws as polynomials.

o Examples are the associative and commutative laws of addition and 

multiplication and the distributive law.

o The generating function

takes the role of additive identity; that is,

0 + G = G + 0 = G for every generating function G.

o Likewise, the generating function 

is the multiplicative identity, so that

1.G = G.1 = G          for every generating function G.

 32 00000 xxx

 32 00011 xxx
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Algebra on G(x)

Such inverse often exists; for example,





















321

132

3232

32

1)1(

1)1(

11

)1)(1(

xxxx

and

xxxx

Thus

xxxxxx

xxxx
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Algebra on G(x)

Inverse of generating function 

The multiplicative inverse of  a generating function A(x) is the formal power series

that satisfies  

Thus,

Recall that two formal power series are equal if and only if all of their coefficients are 

the same. This leads to the system of equations:

1)( 
xA

 


0
)(

n

n

n xbxB

.1)(.)( xBxA








nk

n

knk

n

xxxba ...001 2

0

)4(

)3(0

)2(0

)1(1

201102

1001

00







bababa

baba

ba

 2

021120011000 )()( xbababaxbababa
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Algebra on G(x)

Example:

Find the inverse of the generating function

Solution: 

 321 xxx

 2

021120011000 )()( xbababaxbababa
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Algebra on G(x)

Solution: 

Let

that is 

Free term:

Coefficient of  x 

Coefficient of

Coefficient of                                       hence

 321)( xxxxG

 3

3

2

210

1)( xaxaxaaxG

1. 1 
GG )1( 32  xxx 1)( 3

3

2

210  xaxaxaa

10a

101.1. 110  aaa

2
x 001.1.1. 2210  aaaa

0543  xxx

xxG  1)( 1

 2

021120011000 )()( xbababaxbababa
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Algebra on G(x)

Example:

Find the inverse of the generating function

Solution: 

x1
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Algebra on G(x)

Example:

Find the inverse of the generating function

Solution: 

Let

that is 

Free term:

Coefficient of  x: 

Coefficient of     :

Coefficient of                                       hence

 32 4321 xxx

 32 4321)( xxxxG

 3

3

2

210

1 )( xaxaxaaxG

1. 1 
GG )4321( 32  xxx 1)( 3

3

2

210  xaxaxaa

10a

201.2. 110  aaa

2
x 101.2.3. 2210  aaaa

0543  xxx

21 21)( xxxG 

 2

021120011000 )()( xbababaxbababa
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Useful facts about power series                               

o To use generating functions to solve many important counting problems, we 

will need to apply the binomial theorem for exponents that are not positive 

integers.

o Before we state an extended version of the binomial theorem, we need to 

define extended binomial coefficients.

o is often read as “u choose k”, because there are ways to choose k 

elements from a set of u elements.

Definition: 

Let u be a real number and k a nonnegative integer. Then the 

extended binomial coefficient      is defined by







k

u

( 1)( 2)...( 1)
,

!

1 0

u u u u u k
if u R k Z

k k

u
if k

k

     
    

 
 

  
 









k

u
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Example: Find the values of the extended binomial coefficients         and

Solution:

Taking u = 3 and k = 2 in Definition gives us

Similarly, taking u = 1/2 and k = 3









2

3








3

2/1

3
!3

)13)(3(

2

3













6

)2/3)(2/1)(2/1( 


.
16

1


Useful facts about power series                               

!3

)22/1)(12/1)(2/1(

3

2/1 









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Useful facts about power series                               

o The following example provides a useful formula for extended binomial 

coefficients when the top parameter is a negative integer. It will be useful in 

our subsequent discussions.

Example: When the top parameter is a negative integer, the extended binomial 

coefficient can be expressed in terms of an ordinary binomial coefficient. To 

see that this is the case, note that 

   
1

1 1 ( 1, ) ,
r rn n r

C n r r n r Z
r r

     
          

   

notation:  () notation is for extended BC, while C () is only for ordinary BC!
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Example: Find the values of the extended binomial coefficients       ,        and

Solution:









10

6








9

17

Useful facts about power series                               

  















 









10

15
1

10

1106

10

6 10









3

2

  4
!)34(!3

!4

3

4
1

3

132

3

2 3 


















 










  















 









9

25
1

9

1917

9

17 9
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Useful facts about power series                               

Theorem: The extended binomial theorem

Example: Find the generating function for 

where n is a positive integer, using the extended binomial theorem.

Solution: By the extended Binomial Theorem, it follows that

Using the previous example a simple formula for       , we obtain

Replacing x by –x, we find that     

Let x be a real number with |x| < 1 and let u be a real number. Then

k

k

u
x

k

u
x 














0

)1(

nn
xandx

  )1()1(

 




 
0

)1(
k

kn

k

n
xx









k

n






 
0

.),1()1()1(
k

kkn
xkknCx






 
0

.),1()1(
k

kn
xkknCx
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Find the  generating function for the following, using the extended binomial theorem.

1. 

2. 

3.  

1)1(  x

1)1(  x

1)21(  x
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o Basic counting principles.

o Factorial notation.

o Binomial Coefficients and Pascal’s Triangle.
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One, two, three, we’re…

Counting
o We must count objects to solve many different types of problems. For

instance, counting is used to determine the complexity of algorithms.
o Counting is also required to determine whether there are enough telephone

numbers or Internet protocol addresses to meet demand.
o Furthermore, counting technique are used extensively when probabilities of

events are computed.
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Counting problems are of the following kind:

“How many different 8-letter passwords are there?”

“How many possible ways are there to pick 11 soccer

players out of a 20-player team?”

Most importantly, counting is the basis for computing

probabilities of discrete events.

(“What is the probability of winning the lottery?”)

Basic Counting Principles
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Basic Counting Principles

The sum rule:
If a task can be done in ways and a second task in
ways, and if these two tasks cannot be done at the same
time, then there are ways to do either task.

Example: 

1- The department will award a free computer to either a CS

student or a CS professor. How many different choices are there,
if there are 530 students and 15 professors?

There are 530 + 15 = 545 choices.

1n 2n

21 nn 
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Basic Counting Principles

Generalized sum rule:

o If we have tasks , , …, that can be done in n1, n2, …, nm

ways, respectively, and no two of these tasks can be done at the

same time, then there are n1 + n2 + … + nm ways to do one of these

tasks.

1T 2T mT
mT2T1T
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Basic Counting Principles
Examples:

2- Suppose E is the event of choosing a prime number less than 10, and F is 
the event of choosing an even number less than 10. Then E can occur in four 
ways {2, 3, 5, 7}, and F can occur in 4 ways {2, 4, 6, 8}. However E or F can 
not occur in 4 +4 = 8 ways since 2 is both a prime number less than 10 and 
even less than 10. In fact, E or F can occur in only 4 + 4 – 1 = 7 ways.

3- Suppose E is the event of choosing a prime number between 10 and 20, and suppose 
F is the event of choosing an even number between 10 and 20. Then E can occur in 4 
ways {11, 13, 17, 19}, and F can occur in 4 ways {12, 14, 16, 18}. Then E or F can occur in 
4 + 4 = 8 ways since now none of the even numbers is prime.

4- Suppose that either a member of the mathematics faculty or a student who is 
mathematics major is chosen as a representative to a university committee. How many 
different choices are there for this representative if there are 37 members of the 
mathematics faculty and 83 mathematics majors? 
Solution: From the sum rule there are 37+ 83 = 120 possible ways to pick this 
representative.

5- A student can choose a computer project from one of three lists. The three lists 
contain 23, 15, and 19 possible projects, respectively. How many possible projects are 
there to choose from?
Solution: The student can choose a project from the first list in 23 ways, from the 
second list in 15 ways, and from the third list in 19 ways. Hence, there are 23+15+19=57 
projects to choose from. 
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Basic Counting Principles

The product rule:
Suppose that a procedure can be broken down into two

successive tasks. If there are n1 ways to do the first task

and n2 ways to do the second task after the first task has

been done, then there are n1.n2 ways to do the procedure.

Example: 

1- How many different license plates are there that

containing exactly three English letters ?

There are 26 possibilities to pick the first letter, then 26
possibilities for the second one, and 26 for the last one.
So there are 26.26.26 = 17576 different license plates.
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Basic Counting Principles

Generalized product rule:

If we have a procedure consisting of sequential tasks

T1, T2, …, Tm that can be done in n1, n2, …, nm ways,

respectively, then there are n1.n2 … .nm ways to carry

out the procedure.
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Basic Counting Principles

Examples:

2- Suppose license plate contains two letters followed by three digits with the
first digit not zero. How many different license plates can be printed?
Solution: Each letter can be printed in 26 different ways, the first digit in 9
ways and each of the other two digits in 10 ways. Hence
26.26.9.10.10=608400 different plates can be printed.
3- In how many ways can an organization containing 26 members elect a
president, treasurer, and secretary (assuming no person is elected to more
than one position)?
Solution: The president can be elected in 26 different ways; following this, the
treasurer can be elected in 25 different ways, and, following this, the
secretary can be elected in 24 different ways. Thus, by the above principle of
counting, there are 26.25.24=15600 different ways.

• A digit is a single symbol used to make numeral.

• 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are the ten digits we use in everyday numerals.
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Sum and product rule principle

The sum and product rules can also be phrased in terms of set theory.

Sum rule: Let A1, A2, …, Am be disjoint sets. Then the number of ways to 

choose any element from one of these sets is 

Product rule: Let A1, A2, …, Am be finite sets. Then the number of ways 

to choose one element from each set in the order A1, A2, …, Am is 

....... 2121 Mm AAAAAA 

....... 2121 Mm AAAAAA 
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Factorial notation

The factorial of nonnegative integer n denoted by n!, is the 

product of all positive integer less than or equal to n.   

3 x 2 x 1 = 6

Written using factorial notation

3!Which means
Pronounced as 

“three factorial”
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o The product of positive integers from 1 to n 
inclusive is denoted by n! (read “n factorial”):

o In other words, n! is defined by 

Illustration: 

2!=2.1=2,

3!=3.2.1=6

4!=4.3.2.1=24

5!=5.4!=5.24=120

6!=6.5!=6.120=720 









1or0nif1

2nif)!1n.(n
!n

Factorial notation

In general n! = n(n-1)(n-2)(n-3) . . . (3)(2)(1)
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Factorial notation

a) Simplify
)!2(

!

n

n

)!2(

)!2)(1(





n

nnn

b) Simplify
!6

!8

!6

!678 


c) Express   10 x 9 x 8 x 7   as a factorial.

!6

!10

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Binomial Coefficients

o The symbol          (read “nCr”), where r and n 

are positive integers with r ≤ n, is defined as

o We have the following important relation :

1.2.3)........1r(r

)1rn)......(2n)(1n(n

r

n





















r

n


)!rn(!r

!n

r

n






























rn

n

r

n
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Binomial Coefficients

Illustration(1):

Illustration(2):

o On the other hand, 10 - 7 = 3 and so we can also compute as follows:

o Observe that the second method saves space and time

120
1.2.3

8.9.10

3

10
,792

1.2.3.4.5

8.9.10.11.12

5

12

126
1.2.3.4

6.7.8.9

4

9
,28

1.2

7.8

2

8





































120
1.2.3.4.5.6.7

4.5.6.7.8.9.10

7

10










120
1.2.3

9.8.10

3

10

7

10


















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Useful facts about power series                               

Theorem:

Let x be variables, and let n be a nonnegative integer. Then                   

.1221
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o The numbers          are called the binomial coefficients since they appear as the

coefficients in the expansion of                .  









r

n

 n
ba 



290

Binomial Coefficients and Pascal’s Triangle

Examples:

(a)

(b)
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Binomial Coefficients and Pascal’s Triangle

o The coefficients of the successive powers of a + b can be
arranged in a triangular array of numbers, called Pascal’s
triangle, as pictured in next slide. The numbers in Pascal’s
triangle have the following properties:

1. The first number and the last number in each row is 1.

2. Every other number in the array can be obtained by
adding the two numbers appearing directly above it.
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Binomial Coefficients and Pascal’s Triangle

1      ROW  0

1        1 ROW  1

1      2       1 ROW  2

1     3       3     1 ROW  3

1   4      6        4 1   R0W  4

1    5    10    10       5    1 ROW  5

1   6    15    20    15       6    1 ROW  6 

1    7   21    35    35      21     7    1  ROW  7

1   8   28    56    70     56      28    8   1  ROW  8

1 9 36 84   126 126 84 36   9   1   ROW  9

Yeah! Its finished.
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Binomial Coefficients and Pascal’s Triangle

Pascal’s triangle

1)ba( 0 
ba)ba( 1 

222 bba2a)ba( 
32233 bba3ba3a)ba( 

4322344 bba4ba6ba4a)ba( 
543223455 bba5ba10ba10ba5a)ba( 

65423324566 bab6ba15ba20ba15ba6a)ba( 
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o Permutations.

o Combinations.
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Permutations

o A Permutation is an arrangement of objects (n) in a particular order. 

Notice, ORDER MATTERS!

o In other words, a permutation is an arrangement of objects, without 
repetition, and order being important.

o The number of permutations of n items taken r at a time is denoted by 
P(n, r).

Example 1: List all permutations of the letters ABCD
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Permutations

Example 2: List all three letter permutations of the letters in the word HAND

Now, if you didn't actually need a listing of all the permutations, you could use 
the formula for the number of permutations in the next slide.



o To find the number of Permutations of n items chosen r at a 
time, you can use the formula

o The n value is the total number of objects to chose from. The 
r is the number of objects your actually using.

o In the special case in which r = n, we have P(n, n) = n! 

Corollary: There are n! permutations of n objects 
(taken all at time).
For example, there are 3! = 6 permutations of the
three letters a, b, and c. That is 

!
   where  0  .

( )!

n
r n

n r
 


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Permutations







)!(

)!).(1)......(2)(1(
),(

rn

rnrnnnn
rnP



The number of ways to arrange 
the letters ABC: ____  ____   ____

Number of choices for first blank? 3 ____  ____

3 2 ___Number of choices for second blank?

Number of choices for third blank? 3 2 1

3*2*1 = 6        3! = 3*2*1 = 6

ABC     ACB    BAC    BCA    CAB    CBA
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Permutations



A combination lock will open when the right choice of 
three numbers (from 1 to 30, inclusive) is selected. How 
many different lock combinations are possible assuming 
no number is repeated?

Practice :

Answer Now
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A combination lock will open when the right choice of 
three numbers (from 1 to 30, inclusive) is selected. How 
many different lock combinations are possible assuming 
no number is repeated?

2436028*29*30
)!330(

!30
330 




27!

30!
  p
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Practice:

Permutations



From a club of 24 members, a President, Vice President, 
Secretary, Treasurer and Historian are to be elected.  
In how many ways can the offices be filled?

Practice:

Answer Now
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Permutations



From a club of 24 members, a President, Vice President, 
Secretary, Treasurer and Historian are to be elected.  
In how many ways can the offices be filled?

Practice:

480,100,520*21*22*23*24

)!524(

!24
524







19!

24!
  p
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Permutations



More Examples

(1) Find the number of ways that a party of seven persons can arrange 
themselves in a row of seven chairs.

Solution: The seven persons can arrange themselves in a row in 
7.6.5.4.3.2.1=7! ways.

(2) How many different ways are there to select 4 different players from 10 
players on a team to play four tennis matches. Where the matches are 
ordered?

Solution: P(10, 4) = 10.9.8.7 = 5040.

(2) Find n if, P(n,2)=72.

Solution: P(n,2) = n(n-1)

Hence n(n-1) = 72 or 

(n-9)(n+8)=0

Since n must be positive, the only answer is n=9.

(3) Find 𝑛 if 3𝑃 𝑛, 2 + 27 = 𝑃 3𝑛, 2 .
(4) How many permutations of {a, b, c, d, e, f, g} end with a.

Solution: 720
Note that the set has 7 elements

The last character must be a

The rest can be in any order

Thus, we want a 6-permutation on the set {b, c, d, e, f,g}
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Distinguishable Permutations

o Consider all the permutations of the letters in the word BOB.
Since there are three letters, there should be 3! = 6 different  permutations.

o Those permutations are BOB, BBO, OBB, OBB, BBO, and BOB. Now, while there 
are six permutations, some of them are indistinguishable from each other. 

o If you look at the permutations that are distinguishable, you only have three 
BOB, OBB, and BBO.

o To find the number of distinguishable permutations, take the total number of 
letters factorial divide by the frequency of each letter factorial.
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Where n1  + n2  + … + nk = N



Distinguishable Permutations

Examples of distinguishable permutations

(1) Find the number of distinct permutation that can be formed from all 
letters of the word ”BENZENE”. 
Solution: 

(2) Find the number of distinguishable permutations of the letters in the 
word MISSISSIPPI

(3) 

(4)   

420
!2!3!1

!7
)2,3,1;7( P
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34650
!2!4!4!1

!11
)2,4,4,1;11( P
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o A Combination is an arrangement  of items in which order does 
not matter. 

o In other words, a combination is an arrangement of objects, 
without repetition, and order not being important.

ORDER DOES NOT MATTER!
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Combinations



Example 1: List all permutations of the letters ABCD in group of 3.

There are only four combinations (ABC, ABD, ACD, and BCD). 
Listed below each of those combinations are the six 
permutations that are equivalent as combinations.

• Since the order does not matter in combinations, there are fewer combinations 
than permutations. The combinations  are a "subset" of the permutations.
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. 0     where nr
rnr

n

r
C

n





)!(!

!

Combinations

o The number of combinations of n objects taken r at a time is denoted by 

C(n,r) or 

o To find the number of Combinations of n items chosen r at a time, you can 
use the formula

o The n and r in the formula stand for the total number of objects to 
choose from and the number of objects in the arrangement, respectively.









r

n
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To play a particular card game, each player is dealt five 
cards from a standard deck of 52 cards. How many 
different hands are possible?

Practice:

Answer Now

Combinations
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To play a particular card game, each player is dealt five 
cards from a standard deck of 52 cards. How many 
different hands are possible?

Practice:

960,598,2
1*2*3*4*5

48*49*50*51*52

)!552(!5

!52
552







5!47!

52!
  C

Combinations
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A student must answer 3 out of 5 essay questions on a 
test. In how many different ways can the student select 
the questions?

Practice:

Answer Now

Combinations

308



A student must answer 3 out of 5 essay questions on a 
test. In how many different ways can the student 
select the questions?

Practice:

10
1*2

4*5

)!35(!3

!5
35 




3!2!

5!
  C

Combinations
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A basketball team consists of two centers, five forwards, 
and four guards. In how many ways can the coach select a 
starting line up of one center, two forwards, and two 
guards?

Practice:

Answer Now

Combinations
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A basketball team consists of two centers, five forwards, 
and four guards. In how many ways can the coach select a 
starting line up of one center, two forwards, and two 
guards?

Practice:

2
!1!1

!2
12 C

Center:

10
1*2

4*5

!3!2

!5
25 C

Forwards:

6
1*2

3*4

!2!2

!4
24 C

Guards:

Thus, the number of ways to select the starting line up is  
2*10*6  = 120.

22512 * CCC 4*   

Combinations
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More Examples

(1) How many committees of three can be formed from eight people?
Solution: Number of committees that can be formed is

(2) A farmer buys 3 cows, 2 pigs and 4 hens from a man who has 6 cows, 5 pigs 
and 8 hens. How many choices does the farmer have?

Solution: The farmer can choose the cows in       ways, the pigs in       ways, and 
the hens in      ways.
Hence altogether he can choose the animals in

(3) How many committees of five with a given chairperson can be selected from 
12 persons?
Solution: The chairperson can be chosen in 12 ways and, following this, the 
other four on the committee can be chosen from the eleven remaining in

ways. Thus there are 12         = 12.330 = 3960  such committees.
(4) How many ways are there to select 5 players from a 10-member tennis to 
make a trip to a match at another school?
Solution: C(10,5) = 10!/(5!5!) = 252.
(5) How many ways are there to select a committee to develop a discrete 
mathematics course at KFU if the committee is to consist of 3 faculty members 
from the mathematics department and 4 from the computer science 
department, if there are 9 faculty members of the mathematics department 
and 11 of the computer science department
Solution: The number of ways to select the committee is:

56
1.2.3

6.7.8

3

8
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.27720330.84
!7!4
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.

!6!3
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)4,11(.)3,9( CC
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o The Pigeonhole Principle.

o The Inclusion-Exclusion Principle.

o Ordered and Unordered Partitions.
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o Suppose you have k pigeonholes and n pigeons to be placed in
them. If n > k (# pigeons > # pigeonholes) then at least one
pigeonhole contains at least two pigeons.

o If k+1 or more objects are placed into k boxes, then there is at
least one box containing two or more of the objects.

The pigeonhole principle



315

The pigeonhole principle

o Generalized Pigeonhole Principle: If n pigeonholes are
occupied by kn+1 or more pigeons, where k is a positive
integer, then at least one pigeonhole is occupied by k+1 or
more pigeons.

o Illustration:
 Suppose a department contains 13 professors. Then two of

the professors (pigeons) were born in the same month
(Pigeonhole).

 Among any group of 367 people, there must be at least two
with the same birthday because there are only 366 possible
birthdays.

 In any group of 29 Arabic words, there must be at least two
that begin with the same letter, since there are 28 letters in
the Arabic alphabet.

 In a group of 27 English words, at least two words must
start with the same letter. As there are only 26 letters
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The pigeonhole principle

Example: Find the minimum number of students in a class to
be sure that three of them are born in the same month.

Solution: Here the n=12 months are the pigeonholes and
k+1=3, or k=2. Hence among any kn+1=25 students
(pigeons), three of them are born in the same month.

Example: What is the minimum number of students required
in a discrete mathematics class to be sure that at least
six will receive the same grade, if there are five possible
grades, A, B, C, D, and F?

Solution: Here there are n=5 grades (pigeonholes) and K+1
=6, or K=5. Thus among any kn+1=26 students (pigeons),
six of them have the same grade.
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The Inclusion-Exclusion Principle

o The inclusion–exclusion principle is a counting technique which
generalizes the familiar method of obtaining the number of
elements in the union of two finite sets.

o In other words, is a way to avoid over counting

(1) If X = A∪B and A∩B = Ø, then |X| = |A| + |B|.

o If a group of objects X is split into two groups - denoted A and B, which means that
they have no common elements (A∩B = Ø) and together combine into the whole
(X = A∪B), then the number of elements |X| in the group X can be arrived at by first
counting elements of A and then counting elements of B.

https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Set_(mathematics)
http://www.cut-the-knot.org/do_you_know/add_set.shtml#union
http://www.cut-the-knot.org/do_you_know/add_set.shtml#intersect
http://www.cut-the-knot.org/do_you_know/add_set.shtml#intersect
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The Inclusion-Exclusion Principle

(2) If A and B are not disjoint, we get the simplest form of
the Inclusion-Exclusion Principle:

|A∪B|=|A|+|B|-|A∩B|.

Indeed, in |A| + |B| some elements have been counted. The elements that were counted 
twice are exactly those that belong to A (one count) and also belong to B (the second 
count). In short, counted twice were the elements of A∩B. To obtain an accurate number 
|A∪B| of elements in the union we have to subtract from |A| + |B| the number |A∩B| of 
such elements.

http://www.cut-the-knot.org/arithmetic/elegant.shtml#inc_exc
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The Inclusion-Exclusion Principle

Theorem: For any finite sets A, B, C we have 

CBACBCABACBACBA  
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The Inclusion-Exclusion Principle

For example, for the three subsets
A1 = {2, 3, 7, 9, 10},
A2 = {1, 2, 3, 9}, and
A3 = {2, 4, 9, 10} of S = {l, 2, …, 10}, the following table
summarizes the terms appearing the sum.

|A1∪A2 ∪A3| = (5 + 4 + 4) -(3 + 3 + 2) + 2 = 7
corresponding to the seven elements

A1∪A2∪A3 = {1, 2, 3, 4, 7, 9, 10}

http://www.cut-the-knot.org/do_you_know/add_set.shtml#union
http://www.cut-the-knot.org/do_you_know/add_set.shtml#union
http://www.cut-the-knot.org/do_you_know/add_set.shtml#union
http://www.cut-the-knot.org/do_you_know/add_set.shtml#union
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The pigeonhole principle

Example: Find the number of mathematics students at a college 
taking at least one of the languages French, German, and 
Russian given the following data:
65 study French 20 study French and German 
45 study German 25 study French and Russian 
42 study Russian 15 study German and Russian

8 study all three languages.
Solution: We want to find n(F    G    R) where, F, G, and R 

denote the sets of students studying French, German, and 
Russian, respectively.

By the inclusion-exclusion principle,

n(F     G     R) = n(F) + n(G) + n(R) - n(F     G) - n(F       R) -
n(G      R) + n(F       G       R)

=65+45+42-20-25-15+8=100

Thus 100 students study at least one of the languages.

 

   
  



Partitions

322

o if we wish to divide a set of size n into disjoint subsets, there are
many ways to do this. Example six friends A, C, M, S, R and B have
volunteered to help at a fundraising show. One of them will hand
out programs at the door, two will run a refreshments stand and
three will help guests find their seats. In assigning the friends to
their duties, we need to divide or partition the set of 6 friends
into disjoint subsets of 3, 2 and 1. There are a number of
different ways to do this, a few of which are listed below:

Prog. Refr. Usher

A

C

M

S

R

B

CM

AS

CM

SR

SR

CM

SRB

MRB

ASR

ASM

SAB

RMC

This is not a complete list, it is not difficult to think of other possible partitions



Ordered Partitions
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o A partition is ordered if different subset of the partition have 
characteristics that distinguishes one from the other

Example: If we wish to partition the group of six friends into three groups of
two, and assign two to hand out programs, two to the refreshments stand and
two as ushers, we have an ordered partition because the groups have different
assignments. The following two partitions are counted as different ordered
partitions:

Example In the above example, all three subsets of the partition have different
sizes, so they are distinguishable from each other.

Prog. Refr. Usher 

AS

ASCM

CM RB

RB



Ordered Partitions

o Suppose a bag A contains seven marbles numbered 1 through 
7. We compute the number of ways we can draw, first, two 
marbles from the bag, then three marbles from the bag, and 
lastly two marbles from the bag.

o In other words, we want to compute the number of ordered 
partitions [A1,A2,A3] of the set of seven marbles into cells A1

containing two marbles, A2 containing three marbles and A3

containing two marbles.

o We call these ordered partitions since we distinguish 
between [{1,2},{3,4,5},{6,7}] and[{6,7},{3,4,5},{1,2}]
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o Now we begin with seven marbles in the bag, so there are         ways of 

drawing the first two marbles, i.e. of determining the first cell A1; 

following this, there are five marbles left in the bag and so there are           

ways of drawing the three marbles, i.e. of determining the second cell 

A2; finally, there are two marbles left in the bag and so there are      

ways of determining the last cell A3. Hence there are

different ordered partitions of A into cells A1 containing two marbles,

A2 containing three marbles, and A3 containing two marbles.

o Now observe that

o The above discussion can be shown to holed in general by the 
following theorem.                                     
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Ordered Partitions

= 210
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Ordered Partitions

Theorem: Let A contain n elements and let n1, n2, …, nr be positive 
integers whose sum is n, that is, n1+n2+…+nr=n. Then there exist 

different ordered partitions of A of the form [A1,A2,…Ar] where A1

contains n1 elements, A2 contains n2 elements,…, and Ar contains nr

elements. 

Example: Find the number m of ways that nine toys can be divided 
between four children if the youngest child is to receive three toys 
and each of the others two toys.

Solution: We wish to find the number m of ordered partitions of the 
nine toys into four cells containing 3, 2, 2, 2 toys respectively. By 
above theorem
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Ordered Partitions
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Example: In how many can nine students be partitioned into three
teams containing four, three, and two students, respectively?

Solution: We wish to find the number of ordered partitions of the
nine students into three cells containing 4, 3, 2, student
respectively. By the theorem the number of ordered partitions
are

1260
!2!3!4

!9




Unordered Partitions
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o A partition is unordered when no distinction is made between
subsets of the same size (the order of the subsets does not
matter).

o We use the “overcounting” principle to find a formula for the
number of unordered partitions.

Example: Suppose we wish to split our group of 6 friends A, C, M, S,
R and B into three groups with two people in each group. In this
case, we do not have any particular task for each group in mind
and we are interested only in finding out how many different
ways we can divide the group of 6 into groups of two. In
particular the six pairings shown below give us the same
unordered partition and is counted only as one such unordered
partition or pairing.

CM

AS

CM

SR

SR

CM

SRB

MRB

ASR

ASM

SAB

RMC

AS

CM

AS

RB

RB

CM
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o The above single unordered partition would have counted as six
different ordered partitions if we had a different assignment
for each group as in Examples above. Likewise each unordered
partition into three sets of two gives rise to 3! ordered
partitions and we can calculate the number of unordered
partitions by dividing the number of ordered partitions by 3!.
Hence a set with 6 elements can be partitioned into 3 unordered
subsets of 2 elements in

 
3

6

2,2,2
)!2(!3

!6

!2!2!2!3

!6

!3

1
 ways

o In a similar way, we can derive a formula for the number of 
unordered partitions of a set. 

o A set of n elements can be partitioned into k unordered subsets 
of r elements each (kr = n) in the following number of ways:

 
k

n

rrrr
rk

n

rrrk

n

k )!(!

!

!!...!!

!1
,...,,, 



Unordered Partitions

Example: Find the number m of ways that 12 students can be
partitioned into three teams, A1, A2, and A3, so that each team
contains four students.

Solution: Observe that each partition {A1,A2,A3} of the students can
be arranged in 3! = 6 ways as an ordered partition. By above
theorem there are

such ordered partitions. Thus there are m=34650/6 = 5775
unordered partitions.

34650
!4!4!4

!12


330



Unordered Partitions

Example: In how many ways can 12 students be partitioned into four 
teams, A1,A2,A3, and A4, so that each team contains three 
students?

Solution: Observe that each partition {A1,A2,A3,A4} of the students
can be arranged in 4!=24 ways as an ordered partition. By the
theorem there are

such ordered partitions. Thus there are 369600/24 =15400
unordered partitions.
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



1. Let a and b be positive integers. Suppose the function Q(a, b) 

is given by 

Find a) Q(8, 3)                 b) Q(2, 7)









abifabbbaQ

baif
baQ

)3,(

2
),(

Exercises
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2. Find the solution of the recurrence relation

3. Find the generating function for the sequence given recursively by:𝑎 𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2, 𝑎0= 7 𝑎𝑛𝑑 𝑎1 = 7
4. Find the values of the extended binomial coefficients

5. In how many ways can 12 students be partitioned into four teams, so 
that each team contains three students?

𝒃 ℎ 𝑛 = 10ℎ𝑛−1 − 25𝑎𝑛−2, ℎ0= 2 𝑎𝑛𝑑 ℎ1 =15









9

17

(𝐚) ℎ 𝑛 = ℎ𝑛−1 + 6𝑎𝑛−2, ℎ0= 3 𝑎𝑛𝑑 ℎ1 = 4

333



6. Find the multiplicative inverse of  a generating function given

by the sequence

7. By the inclusion-exclusion principle

8. How many 6 character passwords can be made using only 

1, 3, 5, 7, a, b, c, d, e or f. Assuming no character is used more than once.

9. Tow eleven member soccer teams are to be selected from 34 students,    
18 of them girls and 16 boys. How many ways to select the teams if one 
team is to be all girl?

k

ka 2

CBA 
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10. The Fibonacci sequence satisfies the recurrence …………… 
with f1=?, f2=?

11. Count the permutations of the letters of the word BALACLAVA.

12. How many moves will it take to transfer the disks from the left 

post (A) to the right post (C)? 

A       B       C

13. Find 𝑛 if 3𝑃 𝑛, 2 + 27 = 𝑃 3𝑛, 2 .
335



14. In the movie there are 12 children in the family.

(a) Prove that at least two of the children were born on the same day 
of the week.

(b) Prove that at least two family members (including mother and 
father) are born in the same month.

(c) Find the minimum number in (a) and (b) born on the same week and 
same month respectively.
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o Introduction

o Graphs and Multigraphs

o Finite Graphs & Trivial Graph

o Subgraphs & Isomorphic Graph
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Introduction 

o What is a graph?
We begin by considering Figs. 1.1 and 1.2, which depict part of a road map

and part of an electrical network.
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Introduction 

o Either of these situations can be represented diagrammatically by means of

points and lines, as in Fig. 1.3. The points P, g, R, S and T are called vertices,

the lines are called edges, and the whole diagram is called a graph.

o Note that the intersection of the lines PS and QT is not a vertex, since it does 

not correspond to a cross-roads or to the meeting of two wires.

o Thus, a graph is a representation of a set of points and of how they are 

joined up.
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Introduction 

o Informally, a graph is a diagram consisting of points, called vertices, joined

together by lines, called edges; each edge joins exactly two vertices.

o A graph G is a triple consisting of a vertex set of V(G), an edge set E(G).

Example:

• V:={1, 2, 3, 4, 5, 6, 7}                              

• E:={{1,2}, {2,4}, {2,3}, {4,5}, {4,6}, {6,7}}
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Introduction 

o Adjacency

We say that two vertices v and w of a graph G are adjacent if there is an edge

vw joining them, and the vertices v and w are then incident with such an edge.

Similarly, two distinct edges e and f are adjacent if they have a vertex in

common. The vertices v and w are called endpoints of the edge {v, w}.

o Loop and Multiple Edges

A loop is an edge whose endpoints are equal i.e., an edge joining a

vertex to it self is called a loop. We say that the graph has multiple

edges if in the graph two or more edges joining the same pair of

vertices.
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Undirected and Directed Graphs

o Undirected graph: The edges of a graph are assumed to be unordered

pairs of nodes. Sometimes we say undirected graph to emphasize this point.

In an undirected graph, we write edges using curly braces to denote

unordered pairs. For example, an undirected edge {2,3} from vertex 2 to

vertex 3 is the same thing as an undirected edge {3,2} from vertex 3 to

vertex 2.

o Directed graph: In a directed graph, the two directions are counted as

being distinct directed edges. In an directed graph, we write edges using

parentheses to denote ordered pairs. For example, edge (2,3) is directed

from 2 to 3 , which is different than the directed edge (3,2) from 3 to 2.

Directed graphs are drawn with arrowheads on the links, as shown below:
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Simple Graphs and Multigraphs

o Simple Graphs
Simple graphs are graphs without multiple edges or self-loops.

o Multigraph

A multigraph, as opposed to a simple graph, is an undirected graph in which

multiple edges (and sometimes loops) are allowed.
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Neighborhood and Degree

o Two vertices are called adjacent if they share a common edge, in which case the 

common edge is said to join the two vertices. An edge and a vertex on that edge are 

called incident.

o See the 6-node graph Fig 1.4 for examples of adjacent and incident:

• Nodes 4 and 6 are adjacent (as well as many other pairs of nodes)

• Nodes 1 and 3 are not adjacent (as well as many other pairs of nodes)

• Edge {2,5} is incident to node 2 and node 5.

o The neighborhood of a vertex v in a graph G is the set of vertices adjacent to v. The 

neighborhood is denoted N(v). The neighborhood does not include v itself. For 

example, in the graph below N(5) = {4,2,1} and N(6) = {4}.

o The degree of a vertex is the total number of vertices adjacent to the vertex. The

degree of a vertex v is denoted deg(v). We can equivalently define the degree of a

vertex as the cardinality of its neighborhood and say that for any vertex v, deg(v)

= |N(v)|.

Fig 1.4
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Degree of a Vertex

Theorem: The sum of the degrees of the vertices of a graph G is equal to twice

the number of edges in G, i.e.

Illustration: Consider the graph in Fig 1.4. The sum of degrees equals 14 which, as 

expected, is twice the number of edges.

Example: How many edges are there in a graph with 10 vertices each of degree 6?

Solution: It follows that 2e = 60. Therefore, e = 30. 

o A vertex is said to be even or odd according as its degree is an even or an odd 
number. Thus 1 and 3 are even whereas 2, 4, 5 and 6 are odd vertices in Fig 1.4.

o The Theorem also holds for multigraphs where a loop is counted twice toward 
the degree of its endpoint. For example, in the below graph we have deg (V) = ? 
Why.

o A vertex of degree zero is called an isolated vertex.





Vv

ve )deg(2

v
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Finite Graphs & Trivial Graph

o A finite graph is a graph in which the vertex set and the edge set are finite 

sets. Otherwise, it is called an infinite graph.

o Most commonly in graph theory it is implied that the graphs discussed are 

finite. If the graphs are infinite, that is usually specifically stated.

o The finite graph with one vertex and no edges, i.e., a single point, is called the 

trivial graph.
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Subgraphs Graphs

o A subgraph of a graph G is a graph, each of whose vertices belongs to V(G) and 

each of whose edges belongs to E(G). Thus the graph in Fig. 2.13 is a subgraph 

of the graph in Fig. 2.14, but is not a subgraph of the graph in Fig. 2.15, since 

the latter graph contains no 'triangle'.



348

Subgraphs Graphs

o We can obtain subgraphs of a graph by deleting edges and vertices. If e is an

edge of a graph G, we denote by G - e the graph obtained from G by deleting

the edge e. More generally, if F is any set of edges in G, we denote by G - F the

graph obtained by deleting the edges in F. Similarly, if v is a vertex of G, we

denote by G - v the graph obtained from G by deleting the vertex v together

with the edges incident with v. More generally, if S is any set of vertices in G,

we denote by G - S the graph obtained by deleting the vertices in S and all

edges incident with any of them. Some examples are shown in Fig. 2.16.
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Isomorphic Graphs

o Tow simple graphs G and H are isomorphic if there is a bijection Q: V(G)       V(H)

which  preserves adjacency and nonadjacency 

o In another words, Two graphs G1 and G2 are isomorphic if there is a one-one

correspondence between the vertices of G1 and those of G2 such that the

number of edges joining any two vertices of G1 is equal to the number of edges

joining the corresponding vertices of G2. Thus the two graphs shown in Fig. 2.3

are isomorphic under the correspondence u I , v m, w n, x p,

o y q, z r

)()()()( HEvQuQGEuv 



Isomorphic Graphs

Figure 2.17

u1 u2

u3 u4

v1 v2

v3 v4

a

b

c

de

a

b

c

de

G H

G H

Fig. 2.18 350

Example:  (a) Show that the graphs G(U, E) and H(V, F) are isomorphic in Fig 2.17. 

(b) show that the graphs displayed in Fig 2.18 are not isomorphic. 
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Isomorphic Graphs

Solution:

(a) The function f with f(u1) = v1, f(u2) = v4, f(u3) = v3, and f(u4) = v2 is a one-to-
one correspondence between V and W. We see that this correspondence
preserves adjacency.

Solution:

(b) Both G and H have five vertices and six edges. However, H has a vertex of

degree 1, namely e, whereas G has no vertices of degree 1. It follows that G

and H are nor isomorphic.
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Determine whether or not the following pairs of graphs are isomorphic.

a)

b)
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o Walk, path, trail, cycle and Connectivity

o Connectivity and connected components

o Distance, Diameter, Cutpoints and Bridges

o Euler and Hamilton graphs
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Walks: paths, cycles, trails and circuits

o A walk is an alternating sequence of vertices and connecting edges.

Less formally a walk is any route through a graph from vertex to vertex along

edges. A walk can end on the same vertex on which it began or on a different

vertex. A walk can travel over any edge and any vertex any number of times.

o The number of edges in a walk is called its length.

o A path is a walk that does not include any vertex

twice, except that its first vertex might be the same

as its last. A simple path is a path in which all

vertices are distinct.

o A trail is a walk that does not pass over the same

edge twice. A trail might visit the same vertex twice,

but only if it comes and goes from a different edge

each time.

o A cycle is a path that begins and ends on the same

vertex (does not repeat vertices)

o A circuit is a trail that begins and ends on the same

vertex.
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Example:
Consider the graph G below and consider the following sequences:
A=(P4,P1,P2,P5,P1,P2,P3,P6), B=(P4,P1,P5,P2,P6)

C=(P4,P1,P5,P2,P3,P5,P6), D=(P4,P1,P5,P3,P6)

o The sequence A is a path from P4 to P6, but it is not a trail since the edge {P1,P2}

is used twice.

o The sequence B is not a path since there is no edge {P2,P6}.
o The sequence C is a trail since no edge is used twice, but it is not simple path

since the vertex P5 is used twice.
o The sequence D is a simple path from P4 to P6, but it is not the shortest path

(with respect to length) from P4 to P6.
o The shortest path from P4 to P6 is the simple path (P4,P5,P6) which has length 2.

Walks: paths, cycles, trails and circuits

P1 P3P2

P4 P5 P6
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Example:

(a) Determine a walk, path, trail, closed trail and cycle and their lengths from
the Figure below:

(b) Is it v—> w —>  x —> y —> z —> z —> x a trail?

(c) Is it v —> w —> x —> y —> z  a. path?

(d) Is it v —> w —> x —> y —> z —> x —> v a closed trail?

(e) Is it v —> w —> x —> y —> v  a cycle

Walks: paths, cycles, trails and circuits
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Connectivity and connected components 

o A graph is connected if there is a path connecting every pair of vertices.

o A graph that is not connected can be divided into connected 

components (disjoint connected subgraphs). For example, this graph is made 

of three connected components.

connected disconnected
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Connectivity and connected components 

Example:

How many connected components in the below Figures?
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Distance and Diameter

o Consider a connected graph G. The distance between vertices u and v in G, 
written d(u,v), is the length of the shortest path between u and v.

o The diameter of G, written diam(G), is the maximum distance (longest 
shortest path) between any two points in G.

Example:

Find the d(1, 6)  and the diam (G) in the following graphs.

G
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Distance and Diameter

Example:

What are the diameter of this graph?

D(a, c)= D(a, e) = 3, D(b, c) = D(b, e) = 2, D(c, a) = D(c, d) = 3, D(d, c) = 3, 
D(e, a) = 3, D(f, a) = D(f, d) = 2. So D(G) = 3



Distance and Diameter

A

B

C

D

E

F

H
A

B

C

D

F

E

H

G G’

Example:
in Fig G the d(A,F)=2 and diam(G)=3, whereas in Fig G’, d(A,F)=3 and diam(G)=4.

361
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Cutpoints and Bridges

o Among connected graphs, some are connected so slightly that removal of a
single vertex or edge will disconnect them. Such vertices and edges are quite
important.

o A vertex v is called a cutpoint in G if G – v contains more components than G
does; in particular if G is connected, then a cutpoint is a vertex v such that

G – v is disconnected. Similarly, a bridge (or cutedge) is an edge whose

deletion increases the number of components.
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Hamiltonian Graphs

o A Hamiltonian circuit in a graph G is a closed path that visits every vertex in G 
exactly once.
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o A Eulerian circuit traverses every edge exactly once, but may repeat vertices, 
while a Hamiltonian circuit visits each vertex exactly once but may repeat 
edges.

Eulerian Graphs
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o Labeled and weighted graphs

o Complete, Regular, and Bipartite Graphs
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Labeled and weighted graphs

o A graph G is called labeled graph if its edges and/or vertices are
assigned data.

o In particular, G is called a weighed graph if each edge e of G is
assigned a nonnegative number denoted by w(e) and called the
weight or length e.

o The below Figures shows a weighed graph where the weigh of each
edge is given in the obvious way.

o The weight (or length) of a path in such a weighted graph G is
defined to be the sum of weights of the edges in the path.



A1 A2 A3

A4 A5 A6

P Q

3 6

2 1

6 4

3

27

2

3

4

4

2

Fig. 4-1

o One important problem in graph theory is to find a shortest path, that 
is, a path of minimum weight (length), between any two given vertices.

o The length of a shortest path between P and Q in fig. 4.1 is 14; one 
such path is (P,A1,A2,A5,A3,A6,Q)

o How the reader can find another shortest path?

Labeled and weighted graphs

367
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a
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1

10

2
8

4

2

o Example: Find the shortest path between a and z

Labeled and weighted graphs

e

z

3

6
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c

a

5

1

10

2
8

4

2

o Example: Find the shortest path between a and z

Labeled and weighted graphs

e

z

3

6

369
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Labeled and weighted graphs

Some algorithms

o Most important advances in graph theory arose as a result of attempts
to solve particular practical problems – Euler and the bridges of
Konigsberg.

o We briefly describe one problem the shortest path problem which can
be solved by an efficient algorithm – that is, a finite step-by-step
procedure that quickly gives the solution.

The shortest path problem
o Suppose that we have a “map” of the form shown in Fig 4.2, in which

the letters A-L refer to towns that are connected by roads. If the
lengths of these roads are as marked, what is the length of the
shortest path from A to L?

o Note that the numbers in the diagram need not refer to the lengths
of the roads, but could refer to the times taken to travel along them.
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Labeled and weighted graphs

Fig. 4.2
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Labeled and weighted graphs

o The idea is to move across the graph from left to right, associating
with each vertex V a number L(V) indicating the shortest distance
from A to V.

o To apply the algorithm, we first assign A the label 0 and give B, E and C
the temporary labels L(A) + 3, L(A) + 9 and L(A) + 2 – that is 3, 9 and 2.
We take the smallest of these, and write L(C) = 2. C is now permanently
labelled 2.

o We next look at the vertices adjacent to C. We assign F the temporary
label L(C) + 9 = 11, and we can lower the temporary label at E to L(C) + 6
= 8. The smallest temporary label is now 3 (at B), so we write L(B) = 3.
B is now permanently labelled 3.

o Now we look at the vertices adjacent to B. We assign D the temporary
label L(B) + 2 = 5, and we can lower the temporary label at E to L(B) + 4
= 7. The smallest temporary label is now 5 (at D), so we write L(D) = 5.
D is now permanently labelled 5.

o Continuing in this way, we successively obtain the permanent labels L(E)
= 7, L(G) = 8, L(H) = 9, L(F) = 10, L(I) = 12, L(J) = 13, L(K) = 14, L(L) = 17

o It is shown in Fig 4.3, with circled numbers representing the labels at
the vertices.
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Labeled and weighted graphs

Fig. 4.3
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Complete Graphs

o A graph G is said to be complete if every vertex in G is connected 
to every other vertex on G.

o Thus a complete graph G must be connected.

o The complete graph with n vertices is denoted by Kn. 

o The Figures below shows the graphs K1 through K5.
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Regular Graphs

o A graph G is regular of degree K or k-regular if every vertex has degree K.

o In other words, a graph is regular if every vertex has the same degree.
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Regular Graphs
o The connected 0-regular graph is the trivial graph with one vertex and no 

edges.
o The connected 1-regular graph is the graph with two vertices and one edge 

connecting them.
o The 3-regular graphs must have an even number of vertices since the sum of 

the degrees of the vertices is an even number.
o Note that: The complete graph with n vertices Kn is regular of degree n-1.



377

Bipartite Graphs

o If the vertex set of a graph G can be partitioned into two subsets A and B 
so that each edge of G joins a vertex of A and a vertex of B, then G is a 
bipartite graph. 

o Alliteratively, a bipartite graph is one whose vertices can be coloured black and white in such 
a way that each edge joins a black vertex (in A) and a white vertex (in B).

A

B
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Bipartite Graphs

o A complete bipartite graph is a bipartite graph in which each vertex in A  is

joined to each vertex in B by just one edge. We denote the bipartite graph 

with r black vertices and s white vertices by kr,s; k1,3 , k2,3 , k3,3, k3,4, are shown in

the below Figures. Cleary the graph Km,n has mn edges.
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o Planar graphs
o Graph Colorings
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Planar graphs

o A graph G is planar if it can be drawn in the plane in such a way that no
two edges meet each other except at a vertex to which they are
incident. Any such drawing is called a plane drawing of G.

o For example, the graph k4 is planar, since it can be drawn in the plane
without edges crossing.

o The complete graph with four vertices K4 is usually pictured with crossing
edges as in the above Figure, it can also be drown with non-crossing edges
as in the following Figures
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Planar graphs
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Graph Colorings
o Remember that two vertices are adjacent if they are directly

connected by an edge.

o A coloring of a graph G assigns a color to each vertex of G, with the
restriction that two adjacent vertices never have the same color.

o The chromatic number of G, written ,(G)א is the smallest number of
colors needed to color G so that no two adjacent vertices share the
same color.
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Graph Colorings

o An algorithm by Welch and Powell for a coloring of a graph G. We
emphasize that this algorithm does not always yield a minimal coloring of
G.

o Algorithm (Welch-Powell):
Step 1. Order the vertices of G according to decreasing degrees.
Step 2. Assign the first color C1 to the first vertex and then, in
sequential order, assign C1 to each vertex which is not adjacent to a
previous vertex which was assigned C1.
Step 3. Repeat step 2 with a second color C2 and the subsequence of
noncolored vertices.
Step 4. Repeat step 3 with a third color C3, then a fourth color C4, and so
on until all vertices are colored.
Step 5. Exit.



A1 A2 A3

A4 A5 A6

A7
A8
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Graph Colorings

o Example: Use the Welch-Powell algorithm to paint the
following graph. Find the chromatic number n of the graph.
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Graph Colorings

Solution: 

Ordering the vertices according to decreasing degrees yields

A5, A3, A7, A1, A2, A4, A6, A8

• The first color is assigned to vertices A5 and A1.

• The second color is assigned to vertices A3, A4 and A8.

• The third color is assigned to vertices A7, A2, and A6.

• All the vertices have been assigned a color, and so G is 3-colorable. 

• The chromatic number  א(G) = 3.
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Graph Colorings

Example: 

Use the Welch-Powell algorithm to paint the following graph. 
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Graph Colorings

Solution: 
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Graph Colorings

Example:

What is the chromatic number of the graph shown below?

b                    e

a                     d             g 

c                 f

The chromatic number must be
at least 3 since a, b, and c must
be assigned different colors. So
lets try 3 colors first.

b e

a d g

c f

3 colors work, so the chromatic
number of this graph is 3.
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Graph Colorings

Example:

What is the chromatic number for each graph?
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Graph Colorings

Example:

What is the chromatic number for each graph?

Chromatic number: 2 Chromatic number: 3

Red

Blue

Blue

Red

Blue Red

Yellow

Green

Black Green

Black



Example: 

(a) What is the chromatic number of Kn?

(b) What is the chromatic number of Kn,m, where m and n are positive integers?

Graph Colorings

391



Solution: 

(a) A coloring of Kn can be constructed using n colors by assigning a different
color to each vertex. Is there a coloring using fewer colors? The answer is no.
No two vertices can be assigned the same color, because every two vertices of
this graph are adjacent. Hence, the chromatic number of Kn = n.

(b) The chromatic number for Kn,m is 2 because it is a bipartite graph. This 
means that we can color the set of m vertices with one color and the set of n 
vertices with a second color. Because edges connect only a vertex from the 
set of m vertices and a vertex from the set of n vertices, no two adjacent 
vertices have the same color.

Graph Colorings

392
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o Introduction to Directed Graph

o Subgraphs

o Basic Definitions

o Connectivity 
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start

fill pan
with water

take egg
from fridge

break egg
into pan

boil
water

add salt
to water

A directed graph

Introduction

o A directed graph (or digraph) is a graph, or set of vertices connected by 
edges, where the edges have a direction associated with them.

o Applications

- digital computer or flow system
- one-way streets
- flights
- task scheduling
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Directed Graphs

o A directed graph is graph, i.e., a set of objects (called vertices or nodes) 
that are connected together, where all the edges are directed from one 
vertex to another. A directed graph is sometimes called a digraph.

o A directed graph is an ordered pair G = (V, A) (sometimes G = (V, E)) with:

- V a set whose elements are called vertices, nodes, or points;
- A a set of ordered pairs of vertices, called arrows, directed edges.



Suppose e = (u,v) is a directed edge in a digraph G, the following terminology is 
used:

(a) e begins at u and ends at v.
(b) u is the initial point of e, and v is the terminal point of e.
(c) v is the successor of u.
(d) u is adjacent to v, and v is adjacent from u.
(e) If u = v, then e is called a loop.

396

Directed Graphs

v

C

u

B

D

Initial point

Terminal point

A loop begins and ends at 1



o The set of all successor of a vertex u is defined by:

Succ(u) = {v belong to V: there exists (u,v) belong to E).

It is called the successor list of u.

o If the edges and/or vertices of a directed graph G are labeled with some
type of data, then G is called a labeled directed graph.

o A directed graph G(V,E) is said to be finite if its set V of vertices and its
set E of edges are finite.
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Example: Consider the directed graph bellow. 

• It consists of 4 vertices, A, B, C, D, that is,

V(G) = {A,B,C,D} and the 7 following edges:

E(G)={(A,D),(B,A),(B,A),(D,B),(B,C),(D,C),(B,B)}.

• The edges e2 and e3 are said to be parallel since they both begin at B and 
end at A.

• The edge e7 is a loop since it begins and ends  at B. 

e2



o Let G =(V,E) be a directed graph, and V1 be a subset of V and E1 

subset of E such that the endpoints of the edges in E1 belong to V1.

o Then H(V1,E1) is a directed graph, and it is called subgraph of G.

o In particular, if E1 contains all edges in E whose endpoints belong to 
V1, then H(V1,E1) is called the subgraph of G generated or determined   
by V1.

o For example, consider the graph G = G(V,E) in the previous slide, let 
V1 = {B,C,D} and E1 = {e4,e5,e6,e7}
i.e. E1 = {(D,B),(B,C),(D,C),(B,B)}, then
H(V1,E1) is the subgraph of G generated  by V1. 

Subgraphs

G =(V,E) H =(V1,E1)
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o Suppose G is a directed graph. The outdegree of a vertex v of G,

written outdeg(v), is the number of edges beginning at v, and the

indegree of v, written indeg(v), is the number of edges ending at v.
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Theorem: The sum of the outdegrees of the vertices of a digraph G
equals the sum of the indegrees of the vertices, which equals the number
of edges in G.

o A vertex with zero indegree is called a source, and a vertex v with
zero outdegree is called a sink.
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Example: Consider the following  graph, we have:

- outdeg(A) = 1, outdeg(B) = 4, outdeg(C) = 0, outdeg(D) = 2.

- indeg(A) = 2, inddeg(B) = 2, indeg(C) = 2, indeg(D) = 1

o As expected, the sum of the outdegrees equals the sum of the indegrees,

which equals the number 7 of edges.

o The vertex C is a sink since no edge begins at C. The graph has no sources.

Basic Definitions (Degrees)
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Example: Consider the directed graph G as follows:

(a) Find the indegree and outdegree of each vertex of G.

(b) Find the successor list of each vertex of G.

(c) Are there any sources or sinks?

(d) Find the subgraph H of G generated by the vertex set

V1={X,Y,Z}.

Basic Definitions (Degrees)
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o A (directed) path P in G is an alternating sequence of vertices and directed 
edges, say,

P=(v0,e1,v1,e2,v2,…,en,vn)

Such that each edge ei begins at vi-1 and ends at vi. If there is no ambiguity, 
we denote P by its sequence of vertices or its sequence of edges.

o The length of the path P is n, its number of edges.

o A simple path is a path with distinct vertices.

o A trail is a path with distinct edges.

o A closed path has the same first and last vertices.

o A spanning path contains all the vertices of G.

o A cycle is a closed path with distinct vertices (except the first and last).

o A semipath is the same as a path except the edge ei may begins at vi-1 or vi

and end at the other vertex.

o A vertex v is reachable from a vertex u if there is a path from u to v. If v 
is reachable from u, then there must be a simple path from u to v.
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Example: Consider the following graph G.

(a) The sequence  P1 =(D,C,B,A) is a semipath but not a path since 
(C,B) is not an edge; that is, the direction of e5 = (C, B) does not 
agree with the direction of P1.

(b)The sequence P2 = (D,B,A) is a path from D to A since (D, B) 
and (B, A) are edges. Thus A is reachable from D.  
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(i) G is strongly connected, if for any 
pair of vertices u and v in G, there is a 
path from u to v and a path from v to u 
(each vertex can reach all other 
vertices).

(ii) G is unilaterally connected if, for any 
pair of vertices u and v in G, there is a 
path from u to v or a path from v to u, 
that is, one of them is reachable from 
the other.

(iii) G is weakly connected, if there is a 
semipath between any pair of vertices u 
and v in G.



Theorem: Let G be a finite directed graph, then:

(a) G is strong if and only if G has a closed spanning path.
(b) G is unilateral if and only if G has a spanning path .
(c) G is weak if and only  if G has a spanning semipath.

Example: Consider the following graph. It is weakly connected. There is

no path from C to any other vertex, so G is not strongly connected. 

However, P=(B,A,D,C) is a spanning path, so G is unilaterally connected.
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Example: Consider the directed graph G as follows: 

(a) Find two simple paths from v1 to v6 . Is a = (v1,v2,v4,v6) such a 
simple path?

(b) Find all cycles in G which include v3.
(c) Is G unilaterally connected? Strongly connected?
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Solution: 

(a) (v1,v5,v6) and (v1,v2,v3,v5,v6) are two simple path from v1 to v6. The sequence a 
is not a path since the edge joining v4 to v6 does not begin at v4.

(b) Two cycles: (v3,v1,v2,v3) and (v3,v5,v6,v1,v2,v3).

(c) G is unilaterally connected since (v1,v2,v3,v5,v6,v4) is a spanning
path. G is not strongly connected since there is no closed spanning path.
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Example:
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Connectivity

Are the directed graphs G and 
H showing below strongly 
connected?

Are they weakly 
connected? 



Solution:

G is strongly connected because there is a path between any two
vertices in this directed graph. Hence, G is also weakly connected.

The graph H is not strongly connected. There is no directed path from
a to b in this graph. However, H is weakly connected, since there is a
path between any two vertices in the underlying undirected graph of H.
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